The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak - PubMed (original) (raw)
. 2014 Jan 2;14(1):107-20.
doi: 10.1016/j.stem.2013.09.014. Epub 2013 Oct 17.
Keren Kaufman-Francis 1, Joshua B Studdert 1, Kirsten A Steiner 1, Melinda D Power 1, David A F Loebel 2, Vanessa Jones 1, Angelyn Hor 1, Gustavo de Alencastro 3, Grant J Logan 3, Erdahl T Teber 4, Oliver H Tam 1, Michael D Stutz 5, Ian E Alexander 6, Hilda A Pickett 7, Patrick P L Tam 8
Affiliations
- PMID: 24139757
- DOI: 10.1016/j.stem.2013.09.014
Free article
The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak
Yoji Kojima et al. Cell Stem Cell. 2014.
Free article
Abstract
Mouse epiblast stem cells (EpiSCs) can be derived from a wide range of developmental stages. To characterize and compare EpiSCs with different origins, we derived a series of EpiSC lines from pregastrula stage to late-bud-stage mouse embryos. We found that the transcriptomes of these cells are hierarchically distinct from those of the embryonic stem cells, induced pluripotent stem cells (iPSCs), and epiblast/ectoderm. The EpiSCs display globally similar gene expression profiles irrespective of the original developmental stage of the source tissue. They are developmentally similar to the ectoderm of the late-gastrula-stage embryo and behave like anterior primitive streak cells when differentiated in vitro and in vivo. The EpiSC lines that we derived can also be categorized based on a correlation between gene expression signature and predisposition to differentiate into particular germ-layer derivatives. Our findings therefore highlight distinct identifying characteristics of EpiSCs and provide a foundation for further examination of EpiSC properties and potential.
Copyright © 2014 Elsevier Inc. All rights reserved.
Similar articles
- Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors.
Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R, Economou C, Karagianni E, Zhao S, Lowell S, Wilson V. Tsakiridis A, et al. Development. 2014 Mar;141(6):1209-21. doi: 10.1242/dev.101014. Development. 2014. PMID: 24595287 Free PMC article. - Neural stem cells derived from epiblast stem cells display distinctive properties.
Jang HJ, Kim JS, Choi HW, Jeon I, Choi S, Kim MJ, Song J, Do JT. Jang HJ, et al. Stem Cell Res. 2014 Mar;12(2):506-16. doi: 10.1016/j.scr.2013.12.012. Epub 2014 Jan 4. Stem Cell Res. 2014. PMID: 24463498 - Distinct developmental ground states of epiblast stem cell lines determine different pluripotency features.
Bernemann C, Greber B, Ko K, Sterneckert J, Han DW, Araúzo-Bravo MJ, Schöler HR. Bernemann C, et al. Stem Cells. 2011 Oct;29(10):1496-503. doi: 10.1002/stem.709. Stem Cells. 2011. PMID: 21898681 - Epiblast stem cells contribute new insight into pluripotency and gastrulation.
Chenoweth JG, McKay RD, Tesar PJ. Chenoweth JG, et al. Dev Growth Differ. 2010 Apr;52(3):293-301. doi: 10.1111/j.1440-169X.2010.01171.x. Epub 2010 Mar 7. Dev Growth Differ. 2010. PMID: 20298258 Review. - Generating primed pluripotent epiblast stem cells: A methodology chapter.
Samanta M, Kalantry S. Samanta M, et al. Curr Top Dev Biol. 2020;138:139-174. doi: 10.1016/bs.ctdb.2020.01.005. Epub 2020 Feb 27. Curr Top Dev Biol. 2020. PMID: 32220296 Free PMC article. Review.
Cited by
- Elucidation of the pluripotent potential of bovine embryonic lineages facilitates the establishment of formative stem cell lines.
Zhi M, Gao D, Yao Y, Zhao Z, Wang Y, He P, Feng Z, Zhang J, Huang Z, Gu W, Zhao J, Zhang H, Wang S, Li X, Zhang Q, Zhao Z, Chen X, Zhang X, Qin L, Liu J, Liu C, Cao S, Gao S, Yu W, Ma Z, Han J. Zhi M, et al. Cell Mol Life Sci. 2024 Oct 8;81(1):427. doi: 10.1007/s00018-024-05457-z. Cell Mol Life Sci. 2024. PMID: 39377807 Free PMC article. - A new paradigm for generating high-quality cardiac pacemaker cells from mouse pluripotent stem cells.
Lin Z, Lin B, Hang C, Lu R, Xiong H, Liu J, Wang S, Gong Z, Zhang M, Li D, Fang G, Ding J, Su X, Guo H, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. Lin Z, et al. Signal Transduct Target Ther. 2024 Sep 6;9(1):230. doi: 10.1038/s41392-024-01942-w. Signal Transduct Target Ther. 2024. PMID: 39237509 Free PMC article. - Retinoic acid induces human gastruloids with posterior embryo-like structures.
Hamazaki N, Yang W, Kubo CA, Qiu C, Martin BK, Garge RK, Regalado SG, Nichols EK, Pendyala S, Bradley N, Fowler DM, Lee C, Daza RM, Srivatsan S, Shendure J. Hamazaki N, et al. Nat Cell Biol. 2024 Oct;26(10):1790-1803. doi: 10.1038/s41556-024-01487-8. Epub 2024 Aug 20. Nat Cell Biol. 2024. PMID: 39164488 Free PMC article. - Redox heterogeneity in mouse embryonic stem cells individualizes cell fate decisions.
Ulfig A, Jakob U. Ulfig A, et al. Dev Cell. 2024 Aug 19;59(16):2118-2133.e8. doi: 10.1016/j.devcel.2024.07.008. Epub 2024 Aug 5. Dev Cell. 2024. PMID: 39106861 - Integrative analysis of transcriptomic and epigenomic data reveals distinct patterns for developmental and housekeeping gene regulation.
Abnizova I, Stapel C, Boekhorst RT, Lee JTH, Hemberg M. Abnizova I, et al. BMC Biol. 2024 Apr 10;22(1):78. doi: 10.1186/s12915-024-01869-2. BMC Biol. 2024. PMID: 38600550 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases