Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension - PubMed (original) (raw)
Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension
D Moazed et al. J Mol Biol. 1986.
Abstract
We have investigated in detail the higher-order structure of 16 S ribosomal RNA, both in its naked form and in 30 S ribosomal subunits. Each base in the 16 S rRNA chain has been probed using kethoxal (which reacts with guanine at N1 and N2), dimethylsulfate (which reacts with adenine at N1 and cytosine at N3) and 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (which reacts with uracil at N3 and guanine at N1). The sites of reaction were identified by primer extension with reverse transcriptase using synthetic oligodeoxynucleotide primers. These results provide a detailed and rigorous experimental test of a model for 16 S rRNA secondary structure, which was derived mainly from comparative sequence analysis. Our data also provide information relevant to tertiary and quaternary structure of 16 S rRNA. Data obtained with naked 16 S rRNA show reasonably close agreement with the proposed model, and data obtained with 30 S subunits show nearly complete agreement. Apart from an apparent overall "tightening" of the structure (in which many weakly reactive bases become unreactive), assembly of the proteins with 16 S rRNA to form 30 S subunits brings about numerous local structural rearrangements, resulting in specific enhancements as well as protections. In many instances, the ribosomal proteins appear to "tune" the 16 S rRNA structure to bring it into accordance with the phylogenetically predicted model, even though the RNA on its own often seems to prefer a different structure in certain regions of the molecule. Extensive protection of conserved, unpaired adenines upon formation of 30 S subunits suggests that they play a special role in the assembly process, possibly providing signals for protein recognition.
Similar articles
- Structural analysis of the peptidyl transferase region in ribosomal RNA of the eukaryote Xenopus laevis.
Stebbins-Boaz B, Gerbi SA. Stebbins-Boaz B, et al. J Mol Biol. 1991 Jan 5;217(1):93-112. doi: 10.1016/0022-2836(91)90614-c. J Mol Biol. 1991. PMID: 1988683 - Structure analysis of the 5' external transcribed spacer of the precursor ribosomal RNA from Saccharomyces cerevisiae.
Yeh LC, Lee JC. Yeh LC, et al. J Mol Biol. 1992 Dec 5;228(3):827-39. doi: 10.1016/0022-2836(92)90867-j. J Mol Biol. 1992. PMID: 1469716 - Binding of Escherichia coli ribosomal protein S8 to 16 S rRNA. A model for the interaction and the tertiary structure of the RNA binding site.
Mougel M, Eyermann F, Westhof E, Romby P, Expert-Bezançon A, Ebel JP, Ehresmann B, Ehresmann C. Mougel M, et al. J Mol Biol. 1987 Nov 5;198(1):91-107. doi: 10.1016/0022-2836(87)90460-8. J Mol Biol. 1987. PMID: 3323531 - RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA.
Stern S, Powers T, Changchien LM, Noller HF. Stern S, et al. Science. 1989 May 19;244(4906):783-90. doi: 10.1126/science.2658053. Science. 1989. PMID: 2658053 Review. - [Role of ribonucleic acids in organizing the structure of Escherichia coli ribosomes].
Bogdanov AA. Bogdanov AA. Mol Biol (Mosk). 1978 Jul-Aug;12(4):725-36. Mol Biol (Mosk). 1978. PMID: 355862 Review. Russian.
Cited by
- Unusual structure of the human immunodeficiency virus type 1 trans-activation response element.
Colvin RA, Garcia-Blanco MA. Colvin RA, et al. J Virol. 1992 Feb;66(2):930-5. doi: 10.1128/JVI.66.2.930-935.1992. J Virol. 1992. PMID: 1731114 Free PMC article. - Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells.
Glickman JN, Howe JG, Steitz JA. Glickman JN, et al. J Virol. 1988 Mar;62(3):902-11. doi: 10.1128/JVI.62.3.902-911.1988. J Virol. 1988. PMID: 2828685 Free PMC article. - Hydroxyl radical cleavage of tRNA in the ribosomal P site.
Hüttenhofer A, Noller HF. Hüttenhofer A, et al. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7851-5. doi: 10.1073/pnas.89.17.7851. Proc Natl Acad Sci U S A. 1992. PMID: 1381501 Free PMC article. - Mutations in 16S rRNA that affect UGA (stop codon)-directed translation termination.
Göringer HU, Hijazi KA, Murgola EJ, Dahlberg AE. Göringer HU, et al. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6603-7. doi: 10.1073/pnas.88.15.6603. Proc Natl Acad Sci U S A. 1991. PMID: 1907372 Free PMC article. - Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA.
Rousset F, Pélandakis M, Solignac M. Rousset F, et al. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10032-6. doi: 10.1073/pnas.88.22.10032. Proc Natl Acad Sci U S A. 1991. PMID: 1946420 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources