Hepatic fatty acid trafficking: multiple forks in the road - PubMed (original) (raw)
Review
. 2013 Nov 6;4(6):697-710.
doi: 10.3945/an.113.004648. eCollection 2013 Nov.
Affiliations
- PMID: 24228201
- PMCID: PMC3823518
- DOI: 10.3945/an.113.004648
Review
Hepatic fatty acid trafficking: multiple forks in the road
Douglas G Mashek. Adv Nutr. 2013.
Abstract
The liver plays a unique, central role in regulating lipid metabolism. In addition to influencing hepatic function and disease, changes in specific pathways of fatty acid (FA) metabolism have wide-ranging effects on the metabolism of other nutrients, extra-hepatic physiology, and the development of metabolic diseases. The high prevalence of nonalcoholic fatty liver disease (NAFLD) has led to increased efforts to characterize the underlying biology of hepatic energy metabolism and FA trafficking that leads to disease development. Recent advances have uncovered novel roles of metabolic pathways and specific enzymes in generating lipids important for cellular processes such as signal transduction and transcriptional activation. These studies have also advanced our understanding of key branch points involving FA partitioning between metabolic pathways and have identified new roles for lipid droplets in these events. This review covers recent advances in our understanding of FA trafficking and its regulation. An emphasis will be placed on branch points in these pathways and how alterations in FA trafficking contribute to NAFLD and related comorbidities.
Conflict of interest statement
Author disclosures: D. G. Mashek, no conflicts of interest.
Figures
FIGURE 1
Pathways and enzymes involved in hepatic FA trafficking. Enzymes in red indicate catabolic pathways, whereas blue enzymes are involved in FA disposal. DGAT1 is bicolor, because it may be involved in the synthesis of cytosolic TG from exogenous FA and in VLDL synthesis. ACC1, acetyl-CoA carboxylase 1; ACSL, long chain acyl-CoA synthetase; AGPAT, sn-1-acyl-glycerol-3-phosphate acyltransferase; ATGL, adipose triglyceride lipase; CES, carboxylesterase; CIDEB, cell death-inducing DFF45-like effector B; CPT1a, carnitine palmitoyl transferase 1; CR, chylomicron remnant; DAG, diacylglycerol; DGAT, sn-1,2-diacylglycerol acyltransferase; ELOVL5, long chain fatty acid elongase 5; FA, fatty acid; FAS, fatty acid synthase; FATP, fatty acid transport protein; GPAT, glycerol-3-phosphate acyltransferase; HMGCS2, HMG-CoA synthetase 2; LFABP, liver fatty acid binding protein; LPA, lysophosphatidic acid; MTP, microsomal triglyceride transfer protein; PA, phosphatidic acid; SCD1, stearoyl-CoA desaturase 1.
FIGURE 2
Transcriptional and post-transcriptional regulation of hepatic FA trafficking. Green arrows indicate sources of intracellular FA and red arrows indicate routes of FA disposal. AMPK, AMP-activated protein kinase; CHREBP, carbohydrate response element binding protein; CR, chylomicron remnant; FA, fatty acid; FOXA/O, forkhead box protein; FXR, farnesoid X receptor; HNF-4α, hepatocyte nuclear factor-4α LXR, liver X receptor; mTORC1, mammalian target of rapamycin complex 1; SIRT1, sirtuin 1; SREBP, sterol regulatory element binding protein.
Similar articles
- Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD.
Mashek DG. Mashek DG. Mol Metab. 2021 Aug;50:101115. doi: 10.1016/j.molmet.2020.101115. Epub 2020 Nov 10. Mol Metab. 2021. PMID: 33186758 Free PMC article. Review. - Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD).
Musso G, Gambino R, Cassader M. Musso G, et al. Prog Lipid Res. 2009 Jan;48(1):1-26. doi: 10.1016/j.plipres.2008.08.001. Epub 2008 Sep 9. Prog Lipid Res. 2009. PMID: 18824034 Review. - Role of hepatic lipid species in the progression of nonalcoholic fatty liver disease.
Deng KQ, Huang X, Lei F, Zhang XJ, Zhang P, She ZG, Cai J, Ji YX, Li H. Deng KQ, et al. Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C630-C639. doi: 10.1152/ajpcell.00123.2022. Epub 2022 Jun 27. Am J Physiol Cell Physiol. 2022. PMID: 35759443 Review. - Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity.
Walle P, Takkunen M, Männistö V, Vaittinen M, Lankinen M, Kärjä V, Käkelä P, Ågren J, Tiainen M, Schwab U, Kuusisto J, Laakso M, Pihlajamäki J. Walle P, et al. Metabolism. 2016 May;65(5):655-666. doi: 10.1016/j.metabol.2016.01.011. Epub 2016 Jan 23. Metabolism. 2016. PMID: 27085774 - Fatty Acids and Effects on In Vitro and In Vivo Models of Liver Steatosis.
Vergani L. Vergani L. Curr Med Chem. 2019;26(19):3439-3456. doi: 10.2174/0929867324666170518101334. Curr Med Chem. 2019. PMID: 28521680 Review.
Cited by
- Supplemental Clostridium butyricum modulates lipid metabolism by reshaping the gut microbiota composition and bile acid profile in IUGR suckling piglets.
Zhang X, Yun Y, Lai Z, Ji S, Yu G, Xie Z, Zhang H, Zhong X, Wang T, Zhang L. Zhang X, et al. J Anim Sci Biotechnol. 2023 Mar 13;14(1):36. doi: 10.1186/s40104-023-00828-1. J Anim Sci Biotechnol. 2023. PMID: 36907895 Free PMC article. - Role of fatty acid transport protein 4 in metabolic tissues: insights into obesity and fatty liver disease.
Li H, Herrmann T, Seeßle J, Liebisch G, Merle U, Stremmel W, Chamulitrat W. Li H, et al. Biosci Rep. 2022 Jun 30;42(6):BSR20211854. doi: 10.1042/BSR20211854. Biosci Rep. 2022. PMID: 35583196 Free PMC article. Review. - MicroRNA-124 Regulates Fatty Acid and Triglyceride Homeostasis.
Shaw TA, Singaravelu R, Powdrill MH, Nhan J, Ahmed N, Özcelik D, Pezacki JP. Shaw TA, et al. iScience. 2018 Dec 21;10:149-157. doi: 10.1016/j.isci.2018.11.028. Epub 2018 Nov 20. iScience. 2018. PMID: 30528902 Free PMC article. - Developmental Exposure to 2,2',4,4'-Tetrabromodiphenyl Ether Permanently Alters Blood-Liver Balance of Lipids in Male Mice.
Khalil A, Cevik SE, Hung S, Kolla S, Roy MA, Suvorov A. Khalil A, et al. Front Endocrinol (Lausanne). 2018 Sep 20;9:548. doi: 10.3389/fendo.2018.00548. eCollection 2018. Front Endocrinol (Lausanne). 2018. PMID: 30294300 Free PMC article. - Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease.
Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Ipsen DH, et al. Cell Mol Life Sci. 2018 Sep;75(18):3313-3327. doi: 10.1007/s00018-018-2860-6. Epub 2018 Jun 23. Cell Mol Life Sci. 2018. PMID: 29936596 Free PMC article. Review.
References
- Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD. Cohen JC, Grundy SM, Hobbs HH. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–95 - PubMed
- Boza C, Riquelme A, Ibanez L, Duarte I, Norero E, Viviani P, Soza A, Fernandez JI, Raddatz A, Guzman S, et al. Predictors of nonalcoholic steatohepatitis (NASH) in obese patients undergoing gastric bypass. Obes Surg. 2005;15:1148–53 - PubMed
- Machado M, Marques-Vidal P, Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol. 2006;45:600–6 - PubMed
- Gholam PM, Flancbaum L, Machan JT, Charney DA, Kotler DP. Nonalcoholic fatty liver disease in severely obese subjects. Am J Gastroenterol. 2007;102:399–408 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources