The carbohydrate-active enzymes database (CAZy) in 2013 - PubMed (original) (raw)
. 2014 Jan;42(Database issue):D490-5.
doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.
Affiliations
- PMID: 24270786
- PMCID: PMC3965031
- DOI: 10.1093/nar/gkt1178
The carbohydrate-active enzymes database (CAZy) in 2013
Vincent Lombard et al. Nucleic Acids Res. 2014 Jan.
Abstract
The Carbohydrate-Active Enzymes database (CAZy; http://www.cazy.org) provides online and continuously updated access to a sequence-based family classification linking the sequence to the specificity and 3D structure of the enzymes that assemble, modify and breakdown oligo- and polysaccharides. Functional and 3D structural information is added and curated on a regular basis based on the available literature. In addition to the use of the database by enzymologists seeking curated information on CAZymes, the dissemination of a stable nomenclature for these enzymes is probably a major contribution of CAZy. The past few years have seen the expansion of the CAZy classification scheme to new families, the development of subfamilies in several families and the power of CAZy for the analysis of genomes and metagenomes. This article outlines the changes that have occurred in CAZy during the past 5 years and presents our novel effort to display the resolution and the carbohydrate ligands in crystallographic complexes of CAZymes.
Figures
Figure 1.
A view of the GH13 page showing the newly available 3D structural information (carbohydrate ligands and resolution) in the Structure tab.
Similar articles
- CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database.
Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC. Park BH, et al. Glycobiology. 2010 Dec;20(12):1574-84. doi: 10.1093/glycob/cwq106. Epub 2010 Aug 9. Glycobiology. 2010. PMID: 20696711 - The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. Cantarel BL, et al. Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5. Nucleic Acids Res. 2009. PMID: 18838391 Free PMC article. - The carbohydrate-active enzyme database: functions and literature.
Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N. Drula E, et al. Nucleic Acids Res. 2022 Jan 7;50(D1):D571-D577. doi: 10.1093/nar/gkab1045. Nucleic Acids Res. 2022. PMID: 34850161 Free PMC article. - Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes.
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. You Y, et al. Biotechnol Adv. 2024 Jul-Aug;73:108365. doi: 10.1016/j.biotechadv.2024.108365. Epub 2024 Apr 26. Biotechnol Adv. 2024. PMID: 38677391 Review. - The SGNH hydrolase family: a template for carbohydrate diversity.
Anderson AC, Stangherlin S, Pimentel KN, Weadge JT, Clarke AJ. Anderson AC, et al. Glycobiology. 2022 Sep 19;32(10):826-848. doi: 10.1093/glycob/cwac045. Glycobiology. 2022. PMID: 35871440 Free PMC article. Review.
Cited by
- Genome-Wide Identification and Analysis of Gene Family of Carbohydrate-Binding Modules in Ustilago crameri.
Zhai D, Xu D, Xiang T, Zhang Y, Wu N, Nie F, Yin D, Wang A. Zhai D, et al. Int J Mol Sci. 2024 Nov 2;25(21):11790. doi: 10.3390/ijms252111790. Int J Mol Sci. 2024. PMID: 39519340 Free PMC article. - Genome-wide analysis of the Amorphophallus konjac AkCSLA gene family and its functional characterization in drought tolerance of transgenic arabidopsis.
Luo C, Luo S, Chen Z, Yang R, He X, Chu H, Li Z, Li W, Shi Y. Luo C, et al. BMC Plant Biol. 2024 Oct 31;24(1):1033. doi: 10.1186/s12870-024-05747-5. BMC Plant Biol. 2024. PMID: 39478464 Free PMC article. - Unique Fn3-like biosensor in σI/anti-σI factors for regulatory expression of major cellulosomal scaffoldins in Pseudobacteroides cellulosolvens.
Dong S, Chen C, Li J, Liu YJ, Bayer EA, Lamed R, Mizrahi I, Cui Q, Feng Y. Dong S, et al. Protein Sci. 2024 Nov;33(11):e5193. doi: 10.1002/pro.5193. Protein Sci. 2024. PMID: 39470320 - Environmental Driving of Adaptation Mechanism on Rumen Microorganisms of Sheep Based on Metagenomics and Metabolomics Data Analysis.
He H, Fang C, Liu L, Li M, Liu W. He H, et al. Int J Mol Sci. 2024 Oct 11;25(20):10957. doi: 10.3390/ijms252010957. Int J Mol Sci. 2024. PMID: 39456741 Free PMC article. - Elucidation of the noncovalent interactions driving enzyme activity guides branching enzyme engineering for α-glucan modification.
Zong Z, Zhang X, Chen P, Fu Z, Zeng Y, Wang Q, Chipot C, Leggio LL, Sun Y. Zong Z, et al. Nat Commun. 2024 Oct 9;15(1):8760. doi: 10.1038/s41467-024-53018-6. Nat Commun. 2024. PMID: 39384762 Free PMC article.
References
- Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 1997;7:637–644. - PubMed
- Coutinho PM, Deleury E, Davies GJ, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 2003;328:307–317. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous