Protein permeability in the adult respiratory distress syndrome. Loss of size selectivity of the alveolar epithelium - PubMed (original) (raw)
Protein permeability in the adult respiratory distress syndrome. Loss of size selectivity of the alveolar epithelium
J F Holter et al. J Clin Invest. 1986 Dec.
Abstract
Small amounts of plasma protein normally reach the alveolar epithelial surface by a size-selective process that restricts the passage of very large molecules. Size selectivity may be compromised in the lungs of patients with the adult respiratory distress syndrome (ARDS). To assess this question, bronchoalveolar lavage fluid (BALF) from normal volunteers (n = 11), cardiac edema patients (n = 3), and ARDS patients (n = 8) was compared. Mean total protein in ARDS BALF was greater than 12 times the levels in normals or cardiac edema patients. BALF/plasma total protein ratios and measurements of epithelial lining fluid protein also separated the patients groups. The large proteins IgM and alpha 2-macroglobulin were found in ARDS BALF at greater than 90 times the concentrations of normal or cardiac edema fluid. The relationship of distribution coefficient vs. log molecular weight for seven proteins (54,000-900,000 mol wt) hyperbolically increased in normals but was flat in ARDS patients. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a paucity of high molecular weight proteins in normal and cardiac edema BALF, but demonstrated the full spectrum of plasma proteins in ARDS BALF. We conclude that normal size selectivity is preserved in cardiac edema but is destroyed by the alveolar-capillary injury of ARDS.
Similar articles
- [Defensin in plasma and in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome].
Ashitani J, Mukae H, Ihiboshi H, Taniguchi H, Mashimoto H, Nakazato M, Matsukura S. Ashitani J, et al. Nihon Kyobu Shikkan Gakkai Zasshi. 1996 Dec;34(12):1349-53. Nihon Kyobu Shikkan Gakkai Zasshi. 1996. PMID: 9022318 Japanese. - Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants reduces alveolar inflammatory mediators and protein influx in patients with acute respiratory distress syndrome.
Pacht ER, DeMichele SJ, Nelson JL, Hart J, Wennberg AK, Gadek JE. Pacht ER, et al. Crit Care Med. 2003 Feb;31(2):491-500. doi: 10.1097/01.CCM.0000049952.96496.3E. Crit Care Med. 2003. PMID: 12576957 Clinical Trial. - High concentrations of alpha-defensins in plasma and bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome.
Ashitani J, Mukae H, Arimura Y, Sano A, Tokojima M, Nakazato M. Ashitani J, et al. Life Sci. 2004 Jul 16;75(9):1123-34. doi: 10.1016/j.lfs.2004.01.028. Life Sci. 2004. PMID: 15207659 - Bronchoalveolar lavage in patients with the adult respiratory distress syndrome.
Idell S, Cohen AB. Idell S, et al. Clin Chest Med. 1985 Sep;6(3):459-71. Clin Chest Med. 1985. PMID: 3907947 Review. - Alveolar fluid clearance in patients with ARDS: does it make a difference?
Matthay MA. Matthay MA. Chest. 2002 Dec;122(6 Suppl):340S-343S. doi: 10.1378/chest.122.6_suppl.340s. Chest. 2002. PMID: 12475812 Review.
Cited by
- Pulmonary epithelial barrier function: some new players and mechanisms.
Brune K, Frank J, Schwingshackl A, Finigan J, Sidhaye VK. Brune K, et al. Am J Physiol Lung Cell Mol Physiol. 2015 Apr 15;308(8):L731-45. doi: 10.1152/ajplung.00309.2014. Epub 2015 Jan 30. Am J Physiol Lung Cell Mol Physiol. 2015. PMID: 25637609 Free PMC article. Review. - The caspase inhibitor zVAD increases lung inflammation in pneumovirus infection in mice.
van den Berg E, Bal SM, Kuipers MT, Matute-Bello G, Lutter R, Bos AP, van Woensel JB, Bem RA. van den Berg E, et al. Physiol Rep. 2015 Mar;3(3):e12332. doi: 10.14814/phy2.12332. Physiol Rep. 2015. PMID: 25780096 Free PMC article. - Differential modulation of lung aquaporins among other pathophysiological markers in acute (Cl2 gas) and chronic (carbon nanoparticles, cigarette smoke) respiratory toxicity mouse models.
Bhattacharya SS, Yadav B, Yadav E, Hus A, Yadav N, Kaur P, Rosen L, Jandarov R, Yadav JS. Bhattacharya SS, et al. Front Physiol. 2022 Sep 28;13:880815. doi: 10.3389/fphys.2022.880815. eCollection 2022. Front Physiol. 2022. PMID: 36246134 Free PMC article. - Chemokine CXCL1-Mediated Neutrophil Trafficking in the Lung: Role of CXCR2 Activation.
Sawant KV, Xu R, Cox R, Hawkins H, Sbrana E, Kolli D, Garofalo RP, Rajarathnam K. Sawant KV, et al. J Innate Immun. 2015;7(6):647-58. doi: 10.1159/000430914. Epub 2015 Jul 1. J Innate Immun. 2015. PMID: 26138727 Free PMC article. - Acute lung injury induced by whole gastric fluid: hepatic acute phase response contributes to increase lung antiprotease protection.
Ayala P, Meneses M, Olmos P, Montalva R, Droguett K, Ríos M, Borzone G. Ayala P, et al. Respir Res. 2016 Jun 14;17(1):71. doi: 10.1186/s12931-016-0379-7. Respir Res. 2016. PMID: 27301375 Free PMC article.
References
- J Cell Biol. 1968 Jun;37(3):781-93 - PubMed
- Chest. 1985 Sep;88(3):327-34 - PubMed
- Respir Physiol. 1973 Jul;18(2):238-48 - PubMed
- J Clin Invest. 1974 Oct;54(4):792-804 - PubMed
- J Cell Biol. 1975 Feb;64(2):503-9 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources