Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate - PubMed (original) (raw)
doi: 10.1038/nmeth.2784. Epub 2014 Jan 5.
Affiliations
- PMID: 24390439
- DOI: 10.1038/nmeth.2784
Free article
Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate
Nela Durisic et al. Nat Methods. 2014 Feb.
Free article
Abstract
Photoswitchable fluorescent probes are central to localization-based super-resolution microscopy. Among these probes, fluorescent proteins are appealing because they are genetically encoded. Moreover, the ability to achieve a 1:1 labeling ratio between the fluorescent protein and the protein of interest makes these probes attractive for quantitative single-molecule counting. The percentage of fluorescent protein that is photoactivated into a fluorescently detectable form (i.e., the photoactivation efficiency) plays a crucial part in properly interpreting the quantitative information. It is important to characterize the photoactivation efficiency at the single-molecule level under the conditions used in super-resolution imaging. Here, we used the human glycine receptor expressed in Xenopus oocytes and stepwise photobleaching or single-molecule counting photoactivated localization microcopy (PALM) to determine the photoactivation efficiency of fluorescent proteins mEos2, mEos3.1, mEos3.2, Dendra2, mClavGR2, mMaple, PA-GFP and PA-mCherry. This analysis provides important information that must be considered when using these fluorescent proteins in quantitative super-resolution microscopy.
Similar articles
- Internal rulers to assess fluorescent protein photoactivation efficiency.
Renz M, Wunder C. Renz M, et al. Cytometry A. 2018 Apr;93(4):411-419. doi: 10.1002/cyto.a.23319. Epub 2017 Dec 29. Cytometry A. 2018. PMID: 29286574 - Photoactivatable mCherry for high-resolution two-color fluorescence microscopy.
Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV. Subach FV, et al. Nat Methods. 2009 Feb;6(2):153-9. doi: 10.1038/nmeth.1298. Epub 2009 Jan 25. Nat Methods. 2009. PMID: 19169259 Free PMC article. - A detailed review of genetically encodable RFPs and far-RFPs and their applications in advanced super-resolution imaging techniques.
Dong J, Tayyab B, Wang J. Dong J, et al. Biophys Chem. 2025 Jul;322:107432. doi: 10.1016/j.bpc.2025.107432. Epub 2025 Mar 15. Biophys Chem. 2025. PMID: 40117991 Review. - Deciphering Structural Photophysics of Fluorescent Proteins by Kinetic Crystallography.
Bourgeois D. Bourgeois D. Int J Mol Sci. 2017 Jun 2;18(6):1187. doi: 10.3390/ijms18061187. Int J Mol Sci. 2017. PMID: 28574447 Free PMC article. Review. - Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM).
Lee SH, Shin JY, Lee A, Bustamante C. Lee SH, et al. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17436-41. doi: 10.1073/pnas.1215175109. Epub 2012 Oct 8. Proc Natl Acad Sci U S A. 2012. PMID: 23045631 Free PMC article.
Cited by
- Stochastic approach to the molecular counting problem in superresolution microscopy.
Rollins GC, Shin JY, Bustamante C, Pressé S. Rollins GC, et al. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E110-8. doi: 10.1073/pnas.1408071112. Epub 2014 Dec 22. Proc Natl Acad Sci U S A. 2015. PMID: 25535361 Free PMC article. - A General Mechanism of Green-to-Red Photoconversions of GFP.
Gorbachev DA, Petrusevich EF, Kabylda AM, Maksimov EG, Lukyanov KA, Bogdanov AM, Baranov MS, Bochenkova AV, Mishin AS. Gorbachev DA, et al. Front Mol Biosci. 2020 Jul 29;7:176. doi: 10.3389/fmolb.2020.00176. eCollection 2020. Front Mol Biosci. 2020. PMID: 32850965 Free PMC article. - Model-independent counting of molecules in single-molecule localization microscopy.
Hummer G, Fricke F, Heilemann M. Hummer G, et al. Mol Biol Cell. 2016 Nov 7;27(22):3637-3644. doi: 10.1091/mbc.E16-07-0525. Epub 2016 Jul 27. Mol Biol Cell. 2016. PMID: 27466316 Free PMC article. - Accounting for limited detection efficiency and localization precision in cluster analysis in single molecule localization microscopy.
Shivanandan A, Unnikrishnan J, Radenovic A. Shivanandan A, et al. PLoS One. 2015 Mar 20;10(3):e0118767. doi: 10.1371/journal.pone.0118767. eCollection 2015. PLoS One. 2015. PMID: 25794150 Free PMC article. - The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome.
Olszewski MM, Williams C, Dong KC, Martin A. Olszewski MM, et al. Commun Biol. 2019 Jan 21;2:29. doi: 10.1038/s42003-019-0283-z. eCollection 2019. Commun Biol. 2019. PMID: 30675527 Free PMC article.
References
- Nat Rev Mol Cell Biol. 2008 Dec;9(12):929-43 - PubMed
- PLoS One. 2012;7(1):e30826 - PubMed
- Trends Cell Biol. 2009 Nov;19(11):555-65 - PubMed
- Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15905-10 - PubMed
- Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16015-20 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials