Spatial navigation in young versus older adults - PubMed (original) (raw)

Spatial navigation in young versus older adults

Ivana Gazova et al. Front Aging Neurosci. 2013.

Abstract

Older age is associated with changes in the brain, including the medial temporal lobe, which may result in mild spatial navigation deficits, especially in allocentric navigation. The aim of the study was to characterize the profile of real-space allocentric (world-centered, hippocampus-dependent) and egocentric (body-centered, parietal lobe dependent) navigation and learning in young vs. older adults, and to assess a possible influence of gender. We recruited healthy participants without cognitive deficits on standard neuropsychological testing, white matter lesions or pronounced hippocampal atrophy: 24 young participants (18-26 years old) and 44 older participants stratified as participants 60-70 years old (n = 24) and participants 71-84 years old (n = 20). All underwent spatial navigation testing in the real-space human analog of the Morris Water Maze, which has the advantage of assessing separately allocentric and egocentric navigation and learning. Of the eight consecutive trials, trials 2-8 were used to reduce bias by a rebound effect (more dramatic changes in performance between trials 1 and 2 relative to subsequent trials). The participants who were 71-84 years old (p < 0.001), but not those 60-70 years old, showed deficits in allocentric navigation compared to the young participants. There were no differences in egocentric navigation. All three groups showed spatial learning effect (p' s ≤ 0.01). There were no gender differences in spatial navigation and learning. Linear regression limited to older participants showed linear (β = 0.30, p = 0.045) and quadratic (β = 0.30, p = 0.046) effect of age on allocentric navigation. There was no effect of age on egocentric navigation. These results demonstrate that navigation deficits in older age may be limited to allocentric navigation, whereas egocentric navigation and learning may remain preserved. This specific pattern of spatial navigation impairment may help differentiate normal aging from prodromal Alzheimer's disease.

Keywords: Alzheimer’s disease; aging; allocentric navigation; egocentric navigation; gender; hippocampus; spatial learning; spatial navigation.

PubMed Disclaimer

Figures

FIGURE 1

FIGURE 1

Human analog of the Morris Water Maze. (A) In-scale diagram of the real-space navigation setting. (B) The scheme of three individual subtasks: allocentric–egocentric, egocentric, and allocentric (courtesy of K. Vlček).

FIGURE 2

FIGURE 2

Performance across individual trials in three spatial navigation subtasks for the three age groups. Mean distance errors from the goal with SD are depicted for each trial. Trial 1 was excluded from the analyses to reduce possible bias by a rebound effect. Allocentric–egocentric subtask was not included in statistical analyses, because it was intended as a learning trial to familiarize participants with testing procedure. In the allocentric subtask, the participants 71–84 years old made on average significantly more distance errors than those 18–26 and 60–70 years of age. No significant results were observed for the egocentric subtask. All groups improved their performance in a similar way across seven consecutive trials.

Similar articles

Cited by

References

    1. Antonova E., Parslow D., Brammer M., Dawson G. R., Jackson S. H., Morris R. G. (2009). Age-related neural activity during allocentric spatial memory. Memory 17 125–14310.1080/09658210802077348 - DOI - PubMed
    1. Astur R. S., Ortiz M. L., Sutherland R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behav. Brain Res. 93 185–19010.1016/S0166-4328(98)00019-9 - DOI - PubMed
    1. Astur R. S., Taylor L. B., Mamelak A. N., Philpott L., Sutherland R. J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav. Brain Res. 132 77–8410.1016/S0166-4328(01)00399-0 - DOI - PubMed
    1. Barrash J. (1994). Age-related decline in route learning ability. Dev. Neuropsychol. 10 189–20110.1080/87565649409540578 - DOI
    1. Bowen R. L., Atwood C. S. (2004). Living and dying for sex. a theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology 50 265–29010.1159/000079125 - DOI - PubMed

LinkOut - more resources