Advances in understanding the leukaemia microenvironment - PubMed (original) (raw)
Review
. 2014 Mar;164(6):767-78.
doi: 10.1111/bjh.12725. Epub 2014 Jan 9.
Affiliations
- PMID: 24405087
- PMCID: PMC4381431
- DOI: 10.1111/bjh.12725
Review
Advances in understanding the leukaemia microenvironment
Yoko Tabe et al. Br J Haematol. 2014 Mar.
Abstract
Dynamic interactions between leukaemic cells and cells of the bone marrow are a feature of haematological malignancies. Two distinct microenvironmental niches in the bone marrow, the 'osteoblastic (endosteal)' and 'vascular' niches, provide a sanctuary for subpopulations of leukaemic cells to evade chemotherapy-induced death and allow acquisition of drug resistance. Key components of the bone marrow microenvironment as a home for normal haematopoietic stem cells and the leukaemia stem cell niches, and the molecular pathways critical for microenvironment/leukaemia interactions via cytokines, chemokines and adhesion molecules as well as hypoxic conditions, are described in this review. Finally, the genetic abnormalities of leukaemia-associated stroma are discussed. Further understanding of the contribution of the bone marrow niche to the process of leukaemogenesis may provide new targets that allow destruction of leukaemia stem cells without adversely affecting normal stem cell self-renewal.
Keywords: bone marrow microenvironment; leukaemia; stem cell niche.
© 2014 John Wiley & Sons Ltd.
Figures
Figure 1. Key components of the leukemic bone marrow microenvironment
Components of normal HSC niches consist of multiple cell types including osteoblasts, Cxcl12-abundant reticular (CAR) cells, nestin-positive mesenchymal stem cells (MSCs), _Lepr_-expressing perivascular cells, endothelial cells and Schwann cells wrapping sympathetic nerve fibers. LSCs hijack HSC marrow spaces including perivascular and endosteal niches. The BM stromal cells and osteoblasts produce complex extracellular matrix (ECM) such as vascular cell–adhesion molecule-1 (VCAM-1), fibronectin and hyaluronic acid, which facilitate engraftment and adhesion of LSCs. Osteoblasts within endosteal niches generate transforming growth factor-β (TGF-β), angiopoietin-1 (Ang-1) and Jagged-1 (Jag-1) that in turn promote leukemia cells dormancy and decrease their chemosensitivity. CAR cells, nestin-positive MSCs, Leptin receptor-positive perivascular cells, and endothelial cells may play role for leukemia cells migration to perivascular microenvironment via cytokines, chemokines, and adhesion molecules. Inhibition of leukemia / stroma interactions causes increased leukemia cells cycling and homing to perivascular niches which can potentially be used for chemosensitization to target domant LSCs.
Similar articles
- Role of Microenvironment in Resistance to Therapy in AML.
Tabe Y, Konopleva M. Tabe Y, et al. Curr Hematol Malig Rep. 2015 Jun;10(2):96-103. doi: 10.1007/s11899-015-0253-6. Curr Hematol Malig Rep. 2015. PMID: 25921386 Free PMC article. Review. - Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting.
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA, Martelli AM. Chiarini F, et al. Biochim Biophys Acta. 2016 Mar;1863(3):449-463. doi: 10.1016/j.bbamcr.2015.08.015. Epub 2015 Sep 1. Biochim Biophys Acta. 2016. PMID: 26334291 Review. - Therapeutic Targeting of the Leukaemia Microenvironment.
Kuek V, Hughes AM, Kotecha RS, Cheung LC. Kuek V, et al. Int J Mol Sci. 2021 Jun 26;22(13):6888. doi: 10.3390/ijms22136888. Int J Mol Sci. 2021. PMID: 34206957 Free PMC article. Review. - Leukemia Stem Cells Microenvironment.
Tabe Y, Konopleva M. Tabe Y, et al. Adv Exp Med Biol. 2017;1041:19-32. doi: 10.1007/978-3-319-69194-7_3. Adv Exp Med Biol. 2017. PMID: 29204827 - Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches.
Konopleva M, Tabe Y, Zeng Z, Andreeff M. Konopleva M, et al. Drug Resist Updat. 2009 Aug-Oct;12(4-5):103-13. doi: 10.1016/j.drup.2009.06.001. Epub 2009 Jul 25. Drug Resist Updat. 2009. PMID: 19632887 Free PMC article. Review.
Cited by
- Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence.
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Darici S, et al. J Clin Med. 2020 Sep 11;9(9):2934. doi: 10.3390/jcm9092934. J Clin Med. 2020. PMID: 32932888 Free PMC article. Review. - Leukemia-Induced Cellular Senescence and Stemness Alterations in Mesenchymal Stem Cells Are Reversible upon Withdrawal of B-Cell Acute Lymphoblastic Leukemia Cells.
Vanegas NP, Ruiz-Aparicio PF, Uribe GI, Linares-Ballesteros A, Vernot JP. Vanegas NP, et al. Int J Mol Sci. 2021 Jul 29;22(15):8166. doi: 10.3390/ijms22158166. Int J Mol Sci. 2021. PMID: 34360930 Free PMC article. - Focal Adhesion Kinase as a Potential Target in AML and MDS.
Carter BZ, Mak PY, Wang X, Yang H, Garcia-Manero G, Mak DH, Mu H, Ruvolo VR, Qiu Y, Coombes K, Zhang N, Ragon B, Weaver DT, Pachter JA, Kornblau S, Andreeff M. Carter BZ, et al. Mol Cancer Ther. 2017 Jun;16(6):1133-1144. doi: 10.1158/1535-7163.MCT-16-0719. Epub 2017 Mar 7. Mol Cancer Ther. 2017. PMID: 28270436 Free PMC article. - Association of the EGF-TM7 receptor CD97 expression with FLT3-ITD in acute myeloid leukemia.
Wobus M, Bornhäuser M, Jacobi A, Kräter M, Otto O, Ortlepp C, Guck J, Ehninger G, Thiede C, Oelschlägel U. Wobus M, et al. Oncotarget. 2015 Nov 17;6(36):38804-15. doi: 10.18632/oncotarget.5661. Oncotarget. 2015. PMID: 26462154 Free PMC article. - Delineation of target expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML.
Herrmann H, Sadovnik I, Eisenwort G, Rülicke T, Blatt K, Herndlhofer S, Willmann M, Stefanzl G, Baumgartner S, Greiner G, Schulenburg A, Mueller N, Rabitsch W, Bilban M, Hoermann G, Streubel B, Vallera DA, Sperr WR, Valent P. Herrmann H, et al. Blood Adv. 2020 Oct 27;4(20):5118-5132. doi: 10.1182/bloodadvances.2020001742. Blood Adv. 2020. PMID: 33085758 Free PMC article.
References
- Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439:599–603. - PubMed
- Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149–161. - PubMed
- Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, Kollet O, Hershkoviz R, Alon R, Hardan I, Ben-Hur H, Naor D, Nagler A, Lapidot T. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 2004;103:2981–2989. - PubMed
- Benito J, Shi Y, Szymanska B, Carol H, Boehm I, Lu H, Konoplev S, Fang W, Zweidler-McKay PA, Campana D, Borthakur G, Bueso-Ramos C, Shpall E, Thomas DA, Jordan CT, Kantarjian H, Wilson WR, Lock R, Andreeff M, Konopleva M. Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104. PLoS One. 2011;6:e23108. - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical