Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection - PubMed (original) (raw)
Review
Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection
Yang Lin et al. Stem Cells Dev. 2014.
Abstract
Mammalian embryos produce several waves of hematopoietic cells before the establishment of the hematopoietic stem cell (HSC) hierarchy. These early waves of embryonic hematopoiesis present a reversed hierarchy in which hematopoietic potential is first displayed by highly specialized cells that are derived from transient uni- and bipotent progenitor cells. Hematopoiesis progresses through multilineage erythro-myeloid progenitor cells that lack self-renewal potential and, subsequently, to make distinct lymphoid progenitor cells before culminating in detectable definitive HSC. This review provides an overview of the stepwise development of embryonic hematopoiesis. We focus on recent progress in demonstrating that lymphoid lineages emerge from hemogenic endothelial cells before the presence of definitive HSC activity and discuss the implications of these findings.
Figures
**FIG. 1.
Murine hematopoiesis during embryonic development. Progenitors that can give rise to the primitive erythroid lineage emerge in the yolk sac at embryonic day 7.25 (E7.25). At E8.25, definitive erythro-myeloid progenitors (EMP) can be detected in the yolk sac. At E9.0, both yolk sac and para-aortic splanchnopleure (P-Sp) contain neonatal hematopoietic stem cells (HSC) that can reconstitute sublethally myeloablated newborn animals. Before the first definitive HSC can be detected, lymphoid progenitors that can differentiate into B or T lymphocytes arise in the yolk sac and P-Sp at E9.5. Finally, definitive HSC that can reconstitute lethally irradiated adult mice can be detected in the aorto-gonad-mesonephros (AGM) region at E10.5 and later in the yolk sac and placenta at E11. Definitive HSC expand in the placenta and fetal liver and migrate to the spleen and bone marrow before birth.
Similar articles
- Erythro-myeloid progenitors: "definitive" hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells.
Frame JM, McGrath KE, Palis J. Frame JM, et al. Blood Cells Mol Dis. 2013 Dec;51(4):220-5. doi: 10.1016/j.bcmd.2013.09.006. Epub 2013 Oct 2. Blood Cells Mol Dis. 2013. PMID: 24095199 Free PMC article. Review. - Human yolk sac-derived innate lymphoid-biased multipotent progenitors emerge prior to hematopoietic stem cell formation.
Ni Y, You G, Gong Y, Su X, Du Y, Wang X, Ding X, Fu Q, Zhang M, Cheng T, Lan Y, Liu B, Liu C. Ni Y, et al. Dev Cell. 2024 Oct 7;59(19):2626-2642.e6. doi: 10.1016/j.devcel.2024.06.010. Epub 2024 Jul 11. Dev Cell. 2024. PMID: 38996461 - Distinct hemogenic potential of endothelial cells and CD41+ cells in mouse embryos.
Hashimoto K, Fujimoto T, Shimoda Y, Huang X, Sakamoto H, Ogawa M. Hashimoto K, et al. Dev Growth Differ. 2007 May;49(4):287-300. doi: 10.1111/j.1440-169X.2007.00925.x. Dev Growth Differ. 2007. PMID: 17501906 - [Hematopoietic stem cell emergence and stem cell-independent hematopoiesis in the mouse embryo].
Yoshimoto M. Yoshimoto M. Rinsho Ketsueki. 2018;59(7):915-921. doi: 10.11406/rinketsu.59.915. Rinsho Ketsueki. 2018. PMID: 30078803 Review. Japanese. - Modeling human yolk sac hematopoiesis with pluripotent stem cells.
Atkins MH, Scarfò R, McGrath KE, Yang D, Palis J, Ditadi A, Keller GM. Atkins MH, et al. J Exp Med. 2022 Mar 7;219(3):e20211924. doi: 10.1084/jem.20211924. Epub 2021 Dec 20. J Exp Med. 2022. PMID: 34928315 Free PMC article.
Cited by
- C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages.
Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, Beaudin AE, Lum J, Low I, Forsberg EC, Poidinger M, Zolezzi F, Larbi A, Ng LG, Chan JK, Greter M, Becher B, Samokhvalov IM, Merad M, Ginhoux F. Hoeffel G, et al. Immunity. 2015 Apr 21;42(4):665-78. doi: 10.1016/j.immuni.2015.03.011. Immunity. 2015. PMID: 25902481 Free PMC article. - Adult-repopulating lymphoid potential of yolk sac blood vessels is not confined to arterial endothelial cells.
Wang C, Gong Y, Wei A, Huang T, Hou S, Du J, Li Z, Wang J, Liu B, Lan Y. Wang C, et al. Sci China Life Sci. 2021 Dec;64(12):2073-2087. doi: 10.1007/s11427-021-1935-2. Epub 2021 Jun 23. Sci China Life Sci. 2021. PMID: 34181164 - Pluripotent Stem Cell-Derived Hematopoietic Progenitors Are Unable to Downregulate Key Epithelial-Mesenchymal Transition-Associated miRNAs.
Meader E, Barta T, Melguizo-Sanchis D, Tilgner K, Montaner D, El-Harouni AA, Armstrong L, Lako M. Meader E, et al. Stem Cells. 2018 Jan;36(1):55-64. doi: 10.1002/stem.2724. Epub 2017 Oct 27. Stem Cells. 2018. PMID: 29047185 Free PMC article. - Ontogeny of Tissue-Resident Macrophages.
Hoeffel G, Ginhoux F. Hoeffel G, et al. Front Immunol. 2015 Sep 22;6:486. doi: 10.3389/fimmu.2015.00486. eCollection 2015. Front Immunol. 2015. PMID: 26441990 Free PMC article. Review. - Stem Cells: Potential Therapy for Neonatal Injury?
Yoshimoto M, Koenig JM. Yoshimoto M, et al. Clin Perinatol. 2015 Sep;42(3):597-612. doi: 10.1016/j.clp.2015.04.008. Epub 2015 May 29. Clin Perinatol. 2015. PMID: 26250920 Free PMC article. Review.
References
- Akashi K, Traver D, Miyamoto T. and Weissman IL. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197 - PubMed
- Kondo M, Weissman IL. and Akashi K. (1997). Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672 - PubMed
- Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, Ema H. and Nakauchi H. (2013). Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154:1112–1126 - PubMed
- Ciau-Uitz A, Liu F. and Patient R. (2010). Genetic control of hematopoietic development in Xenopus and zebrafish. Int J Dev Biol 54:1139–1149 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources