Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection - PubMed (original) (raw)
Review
Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection
Yang Lin et al. Stem Cells Dev. 2014.
Abstract
Mammalian embryos produce several waves of hematopoietic cells before the establishment of the hematopoietic stem cell (HSC) hierarchy. These early waves of embryonic hematopoiesis present a reversed hierarchy in which hematopoietic potential is first displayed by highly specialized cells that are derived from transient uni- and bipotent progenitor cells. Hematopoiesis progresses through multilineage erythro-myeloid progenitor cells that lack self-renewal potential and, subsequently, to make distinct lymphoid progenitor cells before culminating in detectable definitive HSC. This review provides an overview of the stepwise development of embryonic hematopoiesis. We focus on recent progress in demonstrating that lymphoid lineages emerge from hemogenic endothelial cells before the presence of definitive HSC activity and discuss the implications of these findings.
Figures
**FIG. 1.
Murine hematopoiesis during embryonic development. Progenitors that can give rise to the primitive erythroid lineage emerge in the yolk sac at embryonic day 7.25 (E7.25). At E8.25, definitive erythro-myeloid progenitors (EMP) can be detected in the yolk sac. At E9.0, both yolk sac and para-aortic splanchnopleure (P-Sp) contain neonatal hematopoietic stem cells (HSC) that can reconstitute sublethally myeloablated newborn animals. Before the first definitive HSC can be detected, lymphoid progenitors that can differentiate into B or T lymphocytes arise in the yolk sac and P-Sp at E9.5. Finally, definitive HSC that can reconstitute lethally irradiated adult mice can be detected in the aorto-gonad-mesonephros (AGM) region at E10.5 and later in the yolk sac and placenta at E11. Definitive HSC expand in the placenta and fetal liver and migrate to the spleen and bone marrow before birth.
Similar articles
- Erythro-myeloid progenitors: "definitive" hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells.
Frame JM, McGrath KE, Palis J. Frame JM, et al. Blood Cells Mol Dis. 2013 Dec;51(4):220-5. doi: 10.1016/j.bcmd.2013.09.006. Epub 2013 Oct 2. Blood Cells Mol Dis. 2013. PMID: 24095199 Free PMC article. Review. - Human yolk sac-derived innate lymphoid-biased multipotent progenitors emerge prior to hematopoietic stem cell formation.
Ni Y, You G, Gong Y, Su X, Du Y, Wang X, Ding X, Fu Q, Zhang M, Cheng T, Lan Y, Liu B, Liu C. Ni Y, et al. Dev Cell. 2024 Oct 7;59(19):2626-2642.e6. doi: 10.1016/j.devcel.2024.06.010. Epub 2024 Jul 11. Dev Cell. 2024. PMID: 38996461 - Distinct hemogenic potential of endothelial cells and CD41+ cells in mouse embryos.
Hashimoto K, Fujimoto T, Shimoda Y, Huang X, Sakamoto H, Ogawa M. Hashimoto K, et al. Dev Growth Differ. 2007 May;49(4):287-300. doi: 10.1111/j.1440-169X.2007.00925.x. Dev Growth Differ. 2007. PMID: 17501906 - [Hematopoietic stem cell emergence and stem cell-independent hematopoiesis in the mouse embryo].
Yoshimoto M. Yoshimoto M. Rinsho Ketsueki. 2018;59(7):915-921. doi: 10.11406/rinketsu.59.915. Rinsho Ketsueki. 2018. PMID: 30078803 Review. Japanese. - Modeling human yolk sac hematopoiesis with pluripotent stem cells.
Atkins MH, Scarfò R, McGrath KE, Yang D, Palis J, Ditadi A, Keller GM. Atkins MH, et al. J Exp Med. 2022 Mar 7;219(3):e20211924. doi: 10.1084/jem.20211924. Epub 2021 Dec 20. J Exp Med. 2022. PMID: 34928315 Free PMC article.
Cited by
- A Common Origin for B-1a and B-2 Lymphocytes in Clonal Pre- Hematopoietic Stem Cells.
Hadland BK, Varnum-Finney B, Mandal PK, Rossi DJ, Poulos MG, Butler JM, Rafii S, Yoder MC, Yoshimoto M, Bernstein ID. Hadland BK, et al. Stem Cell Reports. 2017 Jun 6;8(6):1563-1572. doi: 10.1016/j.stemcr.2017.04.007. Epub 2017 May 4. Stem Cell Reports. 2017. PMID: 28479303 Free PMC article. - Insights into blood cell formation from hemogenic endothelium in lesser-known anatomic sites.
Yzaguirre AD, Speck NA. Yzaguirre AD, et al. Dev Dyn. 2016 Oct;245(10):1011-28. doi: 10.1002/dvdy.24430. Epub 2016 Aug 17. Dev Dyn. 2016. PMID: 27389484 Free PMC article. - RUNX1 and the endothelial origin of blood.
Gao L, Tober J, Gao P, Chen C, Tan K, Speck NA. Gao L, et al. Exp Hematol. 2018 Dec;68:2-9. doi: 10.1016/j.exphem.2018.10.009. Epub 2018 Oct 31. Exp Hematol. 2018. PMID: 30391350 Free PMC article. Review. - Functional B-1 progenitor cells are present in the hematopoietic stem cell-deficient embryo and depend on Cbfβ for their development.
Kobayashi M, Shelley WC, Seo W, Vemula S, Lin Y, Liu Y, Kapur R, Taniuchi I, Yoshimoto M. Kobayashi M, et al. Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12151-6. doi: 10.1073/pnas.1407370111. Epub 2014 Aug 4. Proc Natl Acad Sci U S A. 2014. PMID: 25092306 Free PMC article. - Early hematopoiesis and macrophage development.
McGrath KE, Frame JM, Palis J. McGrath KE, et al. Semin Immunol. 2015 Dec;27(6):379-87. doi: 10.1016/j.smim.2016.03.013. Epub 2016 Mar 25. Semin Immunol. 2015. PMID: 27021646 Free PMC article. Review.
References
- Akashi K, Traver D, Miyamoto T. and Weissman IL. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197 - PubMed
- Kondo M, Weissman IL. and Akashi K. (1997). Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672 - PubMed
- Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, Ema H. and Nakauchi H. (2013). Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154:1112–1126 - PubMed
- Ciau-Uitz A, Liu F. and Patient R. (2010). Genetic control of hematopoietic development in Xenopus and zebrafish. Int J Dev Biol 54:1139–1149 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources