Relationships among ATP synthesis, K+ gradients, and neurotransmitter amino acid levels in isolated rat brain synaptosomes - PubMed (original) (raw)

Comparative Study

Relationships among ATP synthesis, K+ gradients, and neurotransmitter amino acid levels in isolated rat brain synaptosomes

F Dagani et al. J Neurochem. 1987 Oct.

Abstract

Correlations were made among ATP synthesis, transmembrane K+ gradients, and leakage of three amino acid neurotransmitters, gamma-aminobutyric acid (GABA), aspartate, and glutamate, in rat brain synaptosomes incubated under normoxic and respiration-limited conditions. Even under normoxic conditions, a substantial proportion of total ATP synthesis (8%) was provided by glycolysis. Limitation of respiration by approximately 30% through addition of amobarbital (Amytal) caused a twofold decrease in the creatine phosphate/creatine ([CrP]/[Cr]) ratio, and consequently the [ATP]/[ADP] ratio, and a threefold increase in lactate production. There was a detectable decrease in intracellular [K+] and small rises in external GABA, aspartate, and glutamate concentrations. More severe limitations in ATP synthesis caused larger declines in the [CrP]/[Cr] ratio and progressive leakage of K+ and neurotransmitter amino acids. A comparison of delta GATP and delta GNa, K showed the former to be larger by 6 kcal, which indicates that the plasma membrane Na+/K+ pump operates at far from equilibrium. Under respiration-limited conditions, even when total ATP synthesis decreased by approximately 80% and [ATP] declined to less than 0.4 mM, delta GATP was still larger than delta GNa,K. It is suggested that during hypoxia and ischemia, the activity of the plasma membrane Na+/K+ pump in brain becomes limited by [ATP], which falls below the Km value for the low-affinity regulatory site on the enzyme. This failure of the pump and consequent collapse of the ion gradients may contribute to the leakage of neurotransmitter amino acids that occurs in these pathological states.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources