Somatostatin depresses excitability in neurons of the solitary tract complex through hyperpolarization and augmentation of IM, a non-inactivating voltage-dependent outward current blocked by muscarinic agonists - PubMed (original) (raw)
Somatostatin depresses excitability in neurons of the solitary tract complex through hyperpolarization and augmentation of IM, a non-inactivating voltage-dependent outward current blocked by muscarinic agonists
T Jacquin et al. Proc Natl Acad Sci U S A. 1988 Feb.
Abstract
The synaptic function of somatostatin-containing fibers in the nervous system is controversial. Therefore, we used a slice preparation of the rat brain stem to test the electrophysiological effects of prosomatostatin-derived peptides on neurons of the solitary tract complex, which contains an abundance of somatostatin-containing fibers and cell bodies. Superfusion of both somatostatin-14 and somatostatin-28 (the precursor for somatostatin-14), but not somatostatin-28-(1-12) or -(1-10), predominantly inhibited spontaneous spike and subthreshold (probably synaptic) activity. In intracellular recordings, somatostatin-14 and -28 hyperpolarized most neurons in association with a slight (10-35%) but reproducible decrease in input resistance. These hyperpolarizing responses were augmented in depolarized cells and persisted in cells in which spontaneous inhibitory postsynaptic potentials became depolarizing after Cl- injection. These data suggest that somatostatin receptors regulate a K+ conductance. In voltage-clamp studies, somatostatin-28 and -14 induced a steady outward current and augmented the voltage-dependent, nonactivating outward K+ conductance (IM) shown to be blocked by activation of muscarinic cholinergic receptors. These results suggest (i) that somatostatin-containing elements in the solitary tract complex play an inhibitory role through the activation of postsynaptic permeability to potassium ions and (ii) that the same ion channel type may be coregulated by two neurotransmitter candidates, somatostatin and acetylcholine, through a reciprocal control mechanism.
Similar articles
- Somatostatin augments the M-current in hippocampal neurons.
Moore SD, Madamba SG, Joëls M, Siggins GR. Moore SD, et al. Science. 1988 Jan 15;239(4837):278-80. doi: 10.1126/science.2892268. Science. 1988. PMID: 2892268 - Postsynaptic action mechanism of somatostatin on the membrane excitability in spinal substantia gelatinosa neurons of juvenile rats.
Kim SJ, Chung WH, Rhim H, Eun SY, Jung SJ, Kim J. Kim SJ, et al. Neuroscience. 2002;114(4):1139-48. doi: 10.1016/s0306-4522(02)00245-2. Neuroscience. 2002. PMID: 12379266 - Somatostatin increases a voltage-insensitive K+ conductance in rat CA1 hippocampal neurons.
Schweitzer P, Madamba SG, Siggins GR. Schweitzer P, et al. J Neurophysiol. 1998 Mar;79(3):1230-8. doi: 10.1152/jn.1998.79.3.1230. J Neurophysiol. 1998. PMID: 9497404 - Modulation of ion channels by somatostatin and acetylcholine.
Inoue M, Yoshii M. Inoue M, et al. Prog Neurobiol. 1992;38(2):203-30. doi: 10.1016/0301-0082(92)90040-l. Prog Neurobiol. 1992. PMID: 1372125 Review. - Voltage-dependent currents of vertebrate neurons and their role in membrane excitability.
Adams PR, Galvan M. Adams PR, et al. Adv Neurol. 1986;44:137-70. Adv Neurol. 1986. PMID: 2422889 Review.
Cited by
- Somatostatin and corticotrophin releasing hormone cell types are a major source of descending input from the forebrain to the parabrachial nucleus in mice.
Magableh A, Lundy R. Magableh A, et al. Chem Senses. 2014 Oct;39(8):673-82. doi: 10.1093/chemse/bju038. Epub 2014 Aug 2. Chem Senses. 2014. PMID: 25086873 Free PMC article. - Enhancing m currents: a way out for neuropathic pain?
Rivera-Arconada I, Roza C, Lopez-Garcia JA. Rivera-Arconada I, et al. Front Mol Neurosci. 2009 Aug 4;2:10. doi: 10.3389/neuro.02.010.2009. eCollection 2009. Front Mol Neurosci. 2009. PMID: 19680469 Free PMC article. - Localization of the somatostatin receptor SST2A in rat brain using a specific anti-peptide antibody.
Dournaud P, Gu YZ, Schonbrunn A, Mazella J, Tannenbaum GS, Beaudet A. Dournaud P, et al. J Neurosci. 1996 Jul 15;16(14):4468-78. doi: 10.1523/JNEUROSCI.16-14-04468.1996. J Neurosci. 1996. PMID: 8699257 Free PMC article. - Localization of somatostatin (SRIF) SSTR-1, SSTR-2 and SSTR-3 receptor mRNA in rat brain by in situ hybridization.
Pérez J, Rigo M, Kaupmann K, Bruns C, Yasuda K, Bell GI, Lübbert H, Hoyer D. Pérez J, et al. Naunyn Schmiedebergs Arch Pharmacol. 1994 Feb;349(2):145-60. doi: 10.1007/BF00169831. Naunyn Schmiedebergs Arch Pharmacol. 1994. PMID: 8170498 - The roles of K+ conductance in expiratory pattern generation in anaesthetized cats.
Champagnat J, Richter DW. Champagnat J, et al. J Physiol. 1994 Aug 15;479 ( Pt 1)(Pt 1):127-38. doi: 10.1113/jphysiol.1994.sp020282. J Physiol. 1994. PMID: 7990029 Free PMC article.
References
- Nature. 1980 Feb 14;283(5748):673-6 - PubMed
- Proc Natl Acad Sci U S A. 1985 Jul;82(14):4857-61 - PubMed
- Brain Res. 1982 Oct 28;250(1):71-92 - PubMed
- J Physiol. 1986 Dec;381:551-73 - PubMed
- Brain Res. 1980 Oct 27;200(1):195-200 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical