ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging - PubMed (original) (raw)
doi: 10.1016/j.neuroimage.2014.03.034. Epub 2014 Mar 21.
Gholamreza Salimi-Khorshidi 2, Christian F Beckmann 3, Edward J Auerbach 4, Gwenaëlle Douaud 2, Claire E Sexton 5, Enikő Zsoldos 5, Klaus P Ebmeier 5, Nicola Filippini 6, Clare E Mackay 6, Steen Moeller 4, Junqian Xu 7, Essa Yacoub 4, Giuseppe Baselli 8, Kamil Ugurbil 4, Karla L Miller 2, Stephen M Smith 2
Affiliations
- PMID: 24657355
- PMCID: PMC4154346
- DOI: 10.1016/j.neuroimage.2014.03.034
ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
Ludovica Griffanti et al. Neuroimage. 2014.
Abstract
The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB's ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures was assessed using time series (amplitude and spectra), network matrix and spatial map analyses. For time series and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition, and, crucially, with higher spatial and temporal resolution. Moreover, we were able to perform higher dimensionality ICA decompositions with the accelerated data, which is very valuable for detailed network analyses.
Keywords: Artefact removal; Functional connectivity; Functional magnetic resonance imaging (fMRI); Multiband acceleration; Resting-state.
Copyright © 2014 Elsevier Inc. All rights reserved.
Figures
Fig. 1
Graphical illustration of overall evaluation.
Fig. 2
Temporal SNR estimation for various cleaning procedures and acquisition protocols. The boxplots show the distribution across 53 subjects. From the raw SNR results (2.A), it is clear that the cleaning procedure increases the SNR, while the reduced voxel volume and EPI acceleration decreases it. However, taking into account the increased number of timepoints (2.B), the statistical power for simple analyses applied to MB6 data is seen to be comparable to those from the standard acquisition. This is of great value because it means that the increase in statistical power due to the acceleration counters the loss in SNR caused by the increase in spatial resolution.
Fig. 3
Timeseries amplitudes. This measure was obtained by scaling (the standard deviation of the) single-subject timeseries associated with each group-level map by the standard deviation of the corresponding uncleaned timeseries. The boxplots show the distribution of amplitudes across components (each component is first averaged across subjects). All cleanup approaches decrease the amplitude; the amplitude is higher with MB6 sequence than with Standard. STD=Standard sequence; uncl=uncleaned; soft=FIX soft cleaning; agg=FIX aggressive cleaning; nets=Nets cleaning.
Fig. 4
Temporal power spectra (4.A) for different cleaning approaches, obtained from scaled timeseries (i.e., each normalised by the amplitude of the corresponding uncleaned timeseries), averaging the spectra across subjects and then calculating median spectra across components. Uncleaned data have the highest power both at low and high frequency; however, after normalising for power at the highest frequencies (last 0.8% of the spectrum width, where the content of thermal noise is higher than the content in signal) (4. B), it is clear that with soft cleanup we obtained the highest contrast-to-noise ratio. Results are shown for MB6 data, at d=100 (y axis in logarithmic scale).
Fig. 5
Temporal power spectra of the different protocols for each cleaning option. The spectra were obtained by averaging the single subjects’ spectra (from timeseries scaled using the amplitude of uncleaned data) and calculating median spectra across components, without normalisation for high frequency power. Y axis in logarithmic scale.
Fig. 6
Networks’ similarity across subjects. The boxplots show the correlation coefficients (full correlation, partial correlation, and regularised ICOV) between network matrices (unwrapped into a vector of network matrix edges) for all pairs of subjects, with different cleaning steps and for different protocols. ICOV= L1-regularised partial correlation; STD=Standard sequence; uncl=uncleaned; soft=FIX soft cleaning; agg=FIX aggressive cleaning; nets=Nets cleaning.
Fig. 7
Group-level z-statistic maps of two RSNs (sensory-motor network and visual areas), derived from Standard (d=30) and MB6 (d=30 and d=100) datasets using the corresponding training data templates, without and with soft or aggressive FIX cleanup. Individual subjects’ z-statistic maps were mixture model corrected and combined using fixed-effects averaging. Group maps are thresholded at abs(z)>3 (red-yellow colour coding for positive z values, blue-light blue for negative ones). The effect of the cleaning is quite strong in terms of noise removal and more focal signal (as highlighted with the ring around the right sensory-motor network). With high dimensionality the RSNs are split into multiple components, allowing a more detailed analysis of network connectivity.
Fig. 8
Spatial correlations. The boxplots show the distributions across components of the correlation coefficients between the group maps (obtained with ME and FE statistics) and the corresponding templates, for different cleaning approaches and for different acquisition protocols. STD=Standard sequence; uncl=uncleaned; soft=FIX soft cleaning; agg=FIX aggressive cleaning.
Similar articles
- Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM. Salimi-Khorshidi G, et al. Neuroimage. 2014 Apr 15;90:449-68. doi: 10.1016/j.neuroimage.2013.11.046. Epub 2014 Jan 2. Neuroimage. 2014. PMID: 24389422 Free PMC article. - Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
Pruim RHR, Mennes M, Buitelaar JK, Beckmann CF. Pruim RHR, et al. Neuroimage. 2015 May 15;112:278-287. doi: 10.1016/j.neuroimage.2015.02.063. Epub 2015 Mar 11. Neuroimage. 2015. PMID: 25770990 - Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions.
Dipasquale O, Sethi A, Laganà MM, Baglio F, Baselli G, Kundu P, Harrison NA, Cercignani M. Dipasquale O, et al. PLoS One. 2017 Mar 21;12(3):e0173289. doi: 10.1371/journal.pone.0173289. eCollection 2017. PLoS One. 2017. PMID: 28323821 Free PMC article. - Ten Key Observations on the Analysis of Resting-state Functional MR Imaging Data Using Independent Component Analysis.
Calhoun VD, de Lacy N. Calhoun VD, et al. Neuroimaging Clin N Am. 2017 Nov;27(4):561-579. doi: 10.1016/j.nic.2017.06.012. Epub 2017 Aug 18. Neuroimaging Clin N Am. 2017. PMID: 28985929 Free PMC article. Review. - Functional connectomics from resting-state fMRI.
Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, Nichols TE, Robinson EC, Salimi-Khorshidi G, Woolrich MW, Barch DM, Uğurbil K, Van Essen DC. Smith SM, et al. Trends Cogn Sci. 2013 Dec;17(12):666-82. doi: 10.1016/j.tics.2013.09.016. Epub 2013 Nov 12. Trends Cogn Sci. 2013. PMID: 24238796 Free PMC article. Review.
Cited by
- Functional Connectivity of the Human Paraventricular Thalamic Nucleus: Insights From High Field Functional MRI.
Kark SM, Birnie MT, Baram TZ, Yassa MA. Kark SM, et al. Front Integr Neurosci. 2021 Apr 21;15:662293. doi: 10.3389/fnint.2021.662293. eCollection 2021. Front Integr Neurosci. 2021. PMID: 33967711 Free PMC article. - Understanding Graph Isomorphism Network for rs-fMRI Functional Connectivity Analysis.
Kim BH, Ye JC. Kim BH, et al. Front Neurosci. 2020 Jun 30;14:630. doi: 10.3389/fnins.2020.00630. eCollection 2020. Front Neurosci. 2020. PMID: 32714130 Free PMC article. - Neural function underlying reward expectancy and attainment in adolescents with diverse psychiatric symptoms.
Liu Q, Ely BA, Stern ER, Xu J, Kim JW, Pick DG, Alonso CM, Gabbay V. Liu Q, et al. Neuroimage Clin. 2022;36:103258. doi: 10.1016/j.nicl.2022.103258. Epub 2022 Nov 15. Neuroimage Clin. 2022. PMID: 36451362 Free PMC article. - Evaluating the resource allocation index as a potential fMRI-based biomarker for substance use disorder.
Moradi M, Ekhtiari H, Kuplicki R, McKinney B, Stewart JL, Victor TA, Paulus MP; Tulsa 1000 Investigators. Moradi M, et al. Drug Alcohol Depend. 2020 Nov 1;216:108211. doi: 10.1016/j.drugalcdep.2020.108211. Epub 2020 Aug 9. Drug Alcohol Depend. 2020. PMID: 32805548 Free PMC article. - Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior.
Kong R, Yang Q, Gordon E, Xue A, Yan X, Orban C, Zuo XN, Spreng N, Ge T, Holmes A, Eickhoff S, Yeo BTT. Kong R, et al. Cereb Cortex. 2021 Aug 26;31(10):4477-4500. doi: 10.1093/cercor/bhab101. Cereb Cortex. 2021. PMID: 33942058 Free PMC article.
References
- Aalkjaer C, Boedtkjer D, Matchkov V. Vasomotion - what is currently thought? Acta Physiologica (Oxford, England) 2011;202(3):253–269. - PubMed
- Andersson JLR, Jenkinson M, Smith S. Non-linear registration aka spatial normalisation. FMRIB Technial Report TR07JA2 2007
- Andersson JLR, Jenkinson M, Smith S. Non-linear optimisation. FMRIB Technical Report TR07JA1 2007
- Beall EB, Lowe MJ. Isolating physiologic noise sources with independently determined spatial measures. Neuroimage. 2007;37(4):1286–1300. - PubMed
- Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging. 2004;23(2):137–152. - PubMed
Publication types
MeSH terms
Grants and funding
- P41 EB015894/EB/NIBIB NIH HHS/United States
- P30 NS076408/NS/NINDS NIH HHS/United States
- EB015894/EB/NIBIB NIH HHS/United States
- MR/K006673/1/MRC_/Medical Research Council/United Kingdom
- P41 RR008079/RR/NCRR NIH HHS/United States
- P41-RR08079/RR/NCRR NIH HHS/United States
- P30-NS057091/NS/NINDS NIH HHS/United States
- G1001354/MRC_/Medical Research Council/United Kingdom
- 1U54MH091657-01/MH/NIMH NIH HHS/United States
- P30 EY011374/EY/NEI NIH HHS/United States
- 098369/WT_/Wellcome Trust/United Kingdom
- U54 MH091657/MH/NIMH NIH HHS/United States
- P30 NS057091/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous