Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway - PubMed (original) (raw)
. 2014 Sep;34(9):1860-70.
doi: 10.1161/ATVBAHA.113.302879. Epub 2014 Mar 27.
Affiliations
- PMID: 24675662
- DOI: 10.1161/ATVBAHA.113.302879
Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway
Dongliang Wang et al. Arterioscler Thromb Vasc Biol. 2014 Sep.
Abstract
Objective: Recent studies have shown the role of miRNAs in macrophage reverse cholesterol transport and atherogenesis. We hypothesized that coenzyme Q10 (CoQ10) may increase macrophage reverse cholesterol transport by regulating miRNA expression that contributes to the prevention of atherosclerosis.
Approach and results: CoQ10 treatment suppressed oxidized low-density lipoprotein-induced macrophage foam cell formation by ameliorating the binding of activator protein-1 to the putative promoter region of miR-378 primary transcript, thus decreasing the miR-378 level and enhancing the ATP-binding cassette transporter G1-mediated macrophage cholesterol efflux to high-density lipoprotein. Subsequently, the axis of activator protein-1/miR-378/ATP-binding cassette transporter G1 cholesterol efflux was confirmed in peritoneal macrophages isolated from CoQ10-treated apolipoprotein E-deficient mice. Finally, CoQ10 consumption promoted macrophage reverse cholesterol transport and inhibited the progression of atherosclerosis in apolipoprotein E-deficient mice.
Conclusions: This study identified activator protein-1/miR-378/ATP-binding cassette transporter G1 as a novel cascade for CoQ10 in facilitating macrophage cholesterol efflux in vitro and in vivo. Our data thus imply that both CoQ10 and miR-378 are promising candidates for atherosclerosis prevention and treatment.
Keywords: atherosclerosis; coenzyme Q10; macrophages; miRNAs.
© 2014 American Heart Association, Inc.
Comment in
- Coenzyme Q10 increases cholesterol efflux and inhibits atherosclerosis through microRNAs.
Allen RM, Vickers KC. Allen RM, et al. Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):1795-7. doi: 10.1161/ATVBAHA.114.303741. Arterioscler Thromb Vasc Biol. 2014. PMID: 25142877 Free PMC article.
Similar articles
- Coenzyme Q10 consumption promotes ABCG1-mediated macrophage cholesterol efflux: a randomized, double-blind, placebo-controlled, cross-over study in healthy volunteers.
Yan X, Shen T, Jiang X, Tang X, Wang D, Li H, Ling W. Yan X, et al. Mol Nutr Food Res. 2015 Sep;59(9):1725-34. doi: 10.1002/mnfr.201500186. Epub 2015 Jul 1. Mol Nutr Food Res. 2015. PMID: 26081100 Clinical Trial. - Sage weed (Salvia plebeia) extract antagonizes foam cell formation and promotes cholesterol efflux in murine macrophages.
Park SH, Kim JL, Kang MK, Gong JH, Han SY, Shim JH, Lim SS, Kang YH. Park SH, et al. Int J Mol Med. 2012 Nov;30(5):1105-12. doi: 10.3892/ijmm.2012.1103. Epub 2012 Aug 20. Int J Mol Med. 2012. PMID: 22922992 - Coenzyme Q10 increases cholesterol efflux and inhibits atherosclerosis through microRNAs.
Allen RM, Vickers KC. Allen RM, et al. Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):1795-7. doi: 10.1161/ATVBAHA.114.303741. Arterioscler Thromb Vasc Biol. 2014. PMID: 25142877 Free PMC article. - Molecular regulation of macrophage reverse cholesterol transport.
Wang X, Rader DJ. Wang X, et al. Curr Opin Cardiol. 2007 Jul;22(4):368-72. doi: 10.1097/HCO.0b013e3281ec5113. Curr Opin Cardiol. 2007. PMID: 17556891 Review. - ATP-binding cassette transporters A1 and G1, HDL metabolism, cholesterol efflux, and inflammation: important targets for the treatment of atherosclerosis.
Ye D, Lammers B, Zhao Y, Meurs I, Van Berkel TJ, Van Eck M. Ye D, et al. Curr Drug Targets. 2011 May;12(5):647-60. doi: 10.2174/138945011795378522. Curr Drug Targets. 2011. PMID: 21039336 Review.
Cited by
- Intracellular and Plasma Membrane Events in Cholesterol Transport and Homeostasis.
Litvinov DY, Savushkin EV, Dergunov AD. Litvinov DY, et al. J Lipids. 2018 Aug 6;2018:3965054. doi: 10.1155/2018/3965054. eCollection 2018. J Lipids. 2018. PMID: 30174957 Free PMC article. Review. - Lipid Profile and Vascular Remodelling in Young Dyslipidemic Subjects Treated with Nutraceuticals Derived from Red Yeast Rice.
Puato M, Zambon A, Nardin C, Faggin E, Pesavento R, Spinazzè A, Pauletto P, Rattazzi M. Puato M, et al. Cardiovasc Ther. 2021 Apr 22;2021:5546800. doi: 10.1155/2021/5546800. eCollection 2021. Cardiovasc Ther. 2021. PMID: 33976708 Free PMC article. - miRNAs in atherosclerotic plaque initiation, progression, and rupture.
Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. Andreou I, et al. Trends Mol Med. 2015 May;21(5):307-18. doi: 10.1016/j.molmed.2015.02.003. Epub 2015 Mar 11. Trends Mol Med. 2015. PMID: 25771097 Free PMC article. Review. - Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms.
Gui Y, Zheng H, Cao RY. Gui Y, et al. Front Cardiovasc Med. 2022 Apr 13;9:845942. doi: 10.3389/fcvm.2022.845942. eCollection 2022. Front Cardiovasc Med. 2022. PMID: 35498045 Free PMC article. Review. - The Use of Coenzyme Q10 in Cardiovascular Diseases.
Rabanal-Ruiz Y, Llanos-González E, Alcain FJ. Rabanal-Ruiz Y, et al. Antioxidants (Basel). 2021 May 10;10(5):755. doi: 10.3390/antiox10050755. Antioxidants (Basel). 2021. PMID: 34068578 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials