Gene structure, organization, and expression in archaebacteria - PubMed (original) (raw)
Review
Gene structure, organization, and expression in archaebacteria
J W Brown et al. Crit Rev Microbiol. 1989.
Abstract
Major advances have recently been made in understanding the molecular biology of the archaebacteria. In this review, we compare the structure of protein and stable RNA-encoding genes cloned and sequenced from each of the major classes of archaebacteria: the methanogens, extreme halophiles, and acid thermophiles. Protein-encoding genes, including some encoding proteins directly involved in methanogenesis and photoautotrophy, are analyzed on the basis of gene organization and structure, transcriptional control signals, codon usage, and evolutionary conservation. Stable RNA-encoding genes are compared for gene organization and structure, transcriptional signals, and processing events involved in RNA maturation, including intron removal. Comparisons of archaebacterial structures and regulatory systems are made with their eubacterial and eukaryotic homologs.
Similar articles
- Genome organization and transcription in archaebacteria.
Schnabel H, Schnabel R, Yeats S, Tu J, Gierl A, Neumann H, Zillig W. Schnabel H, et al. Folia Biol (Praha). 1984;30 Spec No:2-6. Folia Biol (Praha). 1984. PMID: 6202564 - Analysis of expression of prgX, a key negative regulator of the transfer of the Enterococcus faecalis pheromone-inducible plasmid pCF10.
Bae T, Clerc-Bardin S, Dunny GM. Bae T, et al. J Mol Biol. 2000 Apr 7;297(4):861-75. doi: 10.1006/jmbi.2000.3628. J Mol Biol. 2000. PMID: 10736223 - Characterization and expression analyses of anti-apoptotic Bcl-2-like genes NR-13, Mcl-1, Bcl-X1, and Bcl-X2 in Atlantic cod (Gadus morhua).
Feng CY, Rise ML. Feng CY, et al. Mol Immunol. 2010 Jan;47(4):763-84. doi: 10.1016/j.molimm.2009.10.011. Epub 2009 Nov 17. Mol Immunol. 2010. PMID: 19923001 - Comparative evaluation of gene expression in archaebacteria.
Zillig W, Palm P, Reiter WD, Gropp F, Pühler G, Klenk HP. Zillig W, et al. Eur J Biochem. 1988 May 2;173(3):473-82. doi: 10.1111/j.1432-1033.1988.tb14023.x. Eur J Biochem. 1988. PMID: 3131139 Review. - Molecular biology of archaebacteria.
Dennis PP. Dennis PP. J Bacteriol. 1986 Nov;168(2):471-8. doi: 10.1128/jb.168.2.471-478.1986. J Bacteriol. 1986. PMID: 2430938 Free PMC article. Review. No abstract available.
Cited by
- Construction of an integration vector for use in the archaebacterium Methanococcus voltae and expression of a eubacterial resistance gene.
Gernhardt P, Possot O, Foglino M, Sibold L, Klein A. Gernhardt P, et al. Mol Gen Genet. 1990 Apr;221(2):273-9. doi: 10.1007/BF00261731. Mol Gen Genet. 1990. PMID: 2196433 - Chromosome map of the thermophilic archaebacterium Thermococcus celer.
Noll KM. Noll KM. J Bacteriol. 1989 Dec;171(12):6720-5. doi: 10.1128/jb.171.12.6720-6725.1989. J Bacteriol. 1989. PMID: 2512284 Free PMC article. - NMR-based structure of the conserved protein MTH865 from the archaeon Methanobacterium thermoautotrophicum.
Lee GM, Edwards AM, Arrowsmith CH, McIntosh LP. Lee GM, et al. J Biomol NMR. 2001 Sep;21(1):63-6. doi: 10.1023/a:1011928105928. J Biomol NMR. 2001. PMID: 11693569 No abstract available. - Characterization of a cytosolic NiFe-hydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
Kanai T, Ito S, Imanaka T. Kanai T, et al. J Bacteriol. 2003 Mar;185(5):1705-11. doi: 10.1128/JB.185.5.1705-1711.2003. J Bacteriol. 2003. PMID: 12591889 Free PMC article. - Functional role for a 2-oxo acid dehydrogenase in the halophilic archaeon Haloferax volcanii.
Wanner C, Soppa J. Wanner C, et al. J Bacteriol. 2002 Jun;184(11):3114-21. doi: 10.1128/JB.184.11.3114-3121.2002. J Bacteriol. 2002. PMID: 12003954 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources