Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans - PubMed (original) (raw)
Comparative Study
. 2014 Jun;14(12):1503-18.
doi: 10.1002/pmic.201300508. Epub 2014 May 22.
Affiliations
- PMID: 24687989
- DOI: 10.1002/pmic.201300508
Comparative Study
Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans
Jose Antonio Reales-Calderón et al. Proteomics. 2014 Jun.
Abstract
In response to different stimuli, macrophages can differentiate into either a pro-inflammatory subtype (M1, classically activated macrophages) or acquire an anti-inflammatory phenotype (M2, alternatively activated macrophages). Candida albicans is the most important opportunistic fungus in nosocomial infections, and it is contended by neutrophils and macrophages during the first steps of the invasive infection. Murine macrophages responses to C. albicans have been widely studied, whereas the responses of human-polarized macrophages remain less characterized. In this study, we have characterized the proteomic differences between human M1- and M2-polarized macrophages, both in basal conditions and in response to C. albicans, by quantitative proteomics (2DE). This proteomic approach allowed us to identify metabolic routes and cytoskeletal rearrangement components that are the most relevant differences between M1 and M2 macrophages. The analysis has revealed fructose-1,6-bisphosphatase 1, a critical enzyme in gluconeogenesis, up-regulated in M1, as a novel protein marker for macrophage polarization. Regarding the response to C. albicans, an M1-to-M2 switch in polarization was observed. This M1-to-M2 switch might contribute to Candida pathogenicity by decreasing the generation of specific immune responses, thus enhancing fungal survival and colonization, or instead, may be part of the host attempt to reduce the inflammation and limit the damage of the infection.
Keywords: Candida albicans; Fructose-1,6-bisphosphatase; Macrophage polarization; Metabolism; Microbiology; Two-dimensional difference in-gel electrophoresis.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
- Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus.
Reales-Calderón JA, Martínez-Solano L, Martínez-Gomariz M, Nombela C, Molero G, Gil C. Reales-Calderón JA, et al. J Proteomics. 2012 Aug 3;75(15):4734-46. doi: 10.1016/j.jprot.2012.01.037. Epub 2012 Feb 9. J Proteomics. 2012. PMID: 22342486 - Diabetes during pregnancy influences Hofbauer cells, a subtype of placental macrophages, to acquire a pro-inflammatory phenotype.
Sisino G, Bouckenooghe T, Aurientis S, Fontaine P, Storme L, Vambergue A. Sisino G, et al. Biochim Biophys Acta. 2013 Dec;1832(12):1959-68. doi: 10.1016/j.bbadis.2013.07.009. Epub 2013 Jul 19. Biochim Biophys Acta. 2013. PMID: 23872577 - IL-34 Suppresses Candida albicans Induced TNFα Production in M1 Macrophages by Downregulating Expression of Dectin-1 and TLR2.
Xu R, Sun HF, Williams DW, Jones AV, Al-Hussaini A, Song B, Wei XQ. Xu R, et al. J Immunol Res. 2015;2015:328146. doi: 10.1155/2015/328146. Epub 2015 Jun 3. J Immunol Res. 2015. PMID: 26146640 Free PMC article. - Proteomics to study Candida albicans biology and pathogenicity.
Thomas DP, Pitarch A, Monteoliva L, Gil C, Lopez-Ribot JL. Thomas DP, et al. Infect Disord Drug Targets. 2006 Dec;6(4):335-41. doi: 10.2174/187152606779025815. Infect Disord Drug Targets. 2006. PMID: 17168799 Review. - Candida albicans phospholipomannan: a sweet spot for controlling host response/inflammation.
Fradin C, Bernardes ES, Jouault T. Fradin C, et al. Semin Immunopathol. 2015 Mar;37(2):123-30. doi: 10.1007/s00281-014-0461-5. Epub 2014 Nov 14. Semin Immunopathol. 2015. PMID: 25394861 Review.
Cited by
- Macrophage energy metabolism in cardiometabolic disease.
Wong A, Sun Q, Latif II, Karwi QG. Wong A, et al. Mol Cell Biochem. 2024 Aug 29. doi: 10.1007/s11010-024-05099-6. Online ahead of print. Mol Cell Biochem. 2024. PMID: 39198360 - Secreted factors from M1 macrophages drive prostate cancer stem cell plasticity by upregulating NANOG, SOX2, and CD44 through NFκB-signaling.
Kainulainen K, Niskanen EA, Kinnunen J, Mäki-Mantila K, Hartikainen K, Paakinaho V, Malinen M, Ketola K, Pasonen-Seppänen S. Kainulainen K, et al. Oncoimmunology. 2024 Aug 21;13(1):2393442. doi: 10.1080/2162402X.2024.2393442. eCollection 2024. Oncoimmunology. 2024. PMID: 39175947 Free PMC article. - Safety and reactogenicity of a controlled human infection model of sand fly-transmitted cutaneous leishmaniasis.
Parkash V, Ashwin H, Dey S, Sadlova J, Vojtkova B, Van Bocxlaer K, Wiggins R, Thompson D, Dey NS, Jaffe CL, Schwartz E, Volf P, Lacey CJN, Layton AM, Kaye PM. Parkash V, et al. Nat Med. 2024 Nov;30(11):3150-3162. doi: 10.1038/s41591-024-03146-9. Epub 2024 Aug 2. Nat Med. 2024. PMID: 39095597 Free PMC article. - SerpinB2 deficiency is associated with delayed mammary tumor development and decreased pro-tumorigenic macrophage polarization.
Piao YJ, Kim HS, Kim H, Shen J, Moon WK. Piao YJ, et al. BMC Cancer. 2024 Jul 3;24(1):792. doi: 10.1186/s12885-024-12473-6. BMC Cancer. 2024. PMID: 38956496 Free PMC article. - Dynamic changes in RNA m6A and 5 hmC influence gene expression programs during macrophage differentiation and polarisation.
Pinello N, Song R, Lee Q, Calonne E, Duan KL, Wong E, Tieng J, Mehravar M, Rong B, Lan F, Roediger B, Ma CJ, Yuan BF, Rasko JEJ, Larance M, Ye D, Fuks F, Wong JJ. Pinello N, et al. Cell Mol Life Sci. 2024 May 23;81(1):229. doi: 10.1007/s00018-024-05261-9. Cell Mol Life Sci. 2024. PMID: 38780787 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical