Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans - PubMed (original) (raw)
Comparative Study
. 2014 Jun;14(12):1503-18.
doi: 10.1002/pmic.201300508. Epub 2014 May 22.
Affiliations
- PMID: 24687989
- DOI: 10.1002/pmic.201300508
Comparative Study
Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans
Jose Antonio Reales-Calderón et al. Proteomics. 2014 Jun.
Abstract
In response to different stimuli, macrophages can differentiate into either a pro-inflammatory subtype (M1, classically activated macrophages) or acquire an anti-inflammatory phenotype (M2, alternatively activated macrophages). Candida albicans is the most important opportunistic fungus in nosocomial infections, and it is contended by neutrophils and macrophages during the first steps of the invasive infection. Murine macrophages responses to C. albicans have been widely studied, whereas the responses of human-polarized macrophages remain less characterized. In this study, we have characterized the proteomic differences between human M1- and M2-polarized macrophages, both in basal conditions and in response to C. albicans, by quantitative proteomics (2DE). This proteomic approach allowed us to identify metabolic routes and cytoskeletal rearrangement components that are the most relevant differences between M1 and M2 macrophages. The analysis has revealed fructose-1,6-bisphosphatase 1, a critical enzyme in gluconeogenesis, up-regulated in M1, as a novel protein marker for macrophage polarization. Regarding the response to C. albicans, an M1-to-M2 switch in polarization was observed. This M1-to-M2 switch might contribute to Candida pathogenicity by decreasing the generation of specific immune responses, thus enhancing fungal survival and colonization, or instead, may be part of the host attempt to reduce the inflammation and limit the damage of the infection.
Keywords: Candida albicans; Fructose-1,6-bisphosphatase; Macrophage polarization; Metabolism; Microbiology; Two-dimensional difference in-gel electrophoresis.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
- Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus.
Reales-Calderón JA, Martínez-Solano L, Martínez-Gomariz M, Nombela C, Molero G, Gil C. Reales-Calderón JA, et al. J Proteomics. 2012 Aug 3;75(15):4734-46. doi: 10.1016/j.jprot.2012.01.037. Epub 2012 Feb 9. J Proteomics. 2012. PMID: 22342486 - Diabetes during pregnancy influences Hofbauer cells, a subtype of placental macrophages, to acquire a pro-inflammatory phenotype.
Sisino G, Bouckenooghe T, Aurientis S, Fontaine P, Storme L, Vambergue A. Sisino G, et al. Biochim Biophys Acta. 2013 Dec;1832(12):1959-68. doi: 10.1016/j.bbadis.2013.07.009. Epub 2013 Jul 19. Biochim Biophys Acta. 2013. PMID: 23872577 - IL-34 Suppresses Candida albicans Induced TNFα Production in M1 Macrophages by Downregulating Expression of Dectin-1 and TLR2.
Xu R, Sun HF, Williams DW, Jones AV, Al-Hussaini A, Song B, Wei XQ. Xu R, et al. J Immunol Res. 2015;2015:328146. doi: 10.1155/2015/328146. Epub 2015 Jun 3. J Immunol Res. 2015. PMID: 26146640 Free PMC article. - Proteomics to study Candida albicans biology and pathogenicity.
Thomas DP, Pitarch A, Monteoliva L, Gil C, Lopez-Ribot JL. Thomas DP, et al. Infect Disord Drug Targets. 2006 Dec;6(4):335-41. doi: 10.2174/187152606779025815. Infect Disord Drug Targets. 2006. PMID: 17168799 Review. - Candida albicans phospholipomannan: a sweet spot for controlling host response/inflammation.
Fradin C, Bernardes ES, Jouault T. Fradin C, et al. Semin Immunopathol. 2015 Mar;37(2):123-30. doi: 10.1007/s00281-014-0461-5. Epub 2014 Nov 14. Semin Immunopathol. 2015. PMID: 25394861 Review.
Cited by
- Antifungal innate immunity: recognition and inflammatory networks.
Becker KL, Ifrim DC, Quintin J, Netea MG, van de Veerdonk FL. Becker KL, et al. Semin Immunopathol. 2015 Mar;37(2):107-16. doi: 10.1007/s00281-014-0467-z. Epub 2014 Dec 20. Semin Immunopathol. 2015. PMID: 25527294 Review. - Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections.
Ramos I, Stamatakis K, Oeste CL, Pérez-Sala D. Ramos I, et al. Int J Mol Sci. 2020 Jun 30;21(13):4675. doi: 10.3390/ijms21134675. Int J Mol Sci. 2020. PMID: 32630064 Free PMC article. Review. - Candida albicans/Macrophage Biointerface on Human and Porcine Decellularized Adipose Matrices.
Cicuéndez M, Casarrubios L, Feito MJ, Madarieta I, Garcia-Urkia N, Murua O, Olalde B, Briz N, Diez-Orejas R, Portolés MT. Cicuéndez M, et al. J Fungi (Basel). 2021 May 17;7(5):392. doi: 10.3390/jof7050392. J Fungi (Basel). 2021. PMID: 34067785 Free PMC article. - A Fun-Guide to Innate Immune Responses to Fungal Infections.
Burgess TB, Condliffe AM, Elks PM. Burgess TB, et al. J Fungi (Basel). 2022 Jul 29;8(8):805. doi: 10.3390/jof8080805. J Fungi (Basel). 2022. PMID: 36012793 Free PMC article. Review. - Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.
Krüger T, Luo T, Schmidt H, Shopova I, Kniemeyer O. Krüger T, et al. Proteomes. 2015 Dec 14;3(4):467-495. doi: 10.3390/proteomes3040467. Proteomes. 2015. PMID: 28248281 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical