The organization of the projection from the cerebral cortex to the striatum in the rat - PubMed (original) (raw)
The organization of the projection from the cerebral cortex to the striatum in the rat
A J McGeorge et al. Neuroscience. 1989.
Abstract
The detailed organization of the corticostriate projection has been investigated in the brain of the rat using the technique of retrograde transport of horseradish peroxidase following the placement of small, iontophoretic injections of horseradish peroxidase conjugated to lectin throughout all major regions of the striatum (caudate-putamen, nucleus accumbens and olfactory tubercle). The results demonstrate that all major regions of the cerebral cortex project to the striatum on both sides of the brain with an ipsilateral predominance. The cells of origin of both the ipsilateral and contralateral corticostriate projections lie mainly in lamina V (especially lamina Va) with very small numbers in lamina III of the neocortex and mesocortex, and in the deep laminae of the allocortex. The results show that each striatal locus receives inputs from several cortical regions, i.e. there is extensive overlap in the corticostriate projection, and that, in general terms, each cortical region projects onto a longitudinally oriented region of the striatum. In particular, the major subdivisions of the cerebral cortex--the neocortex, mesocortex and allocortex--project onto defined but partially overlapping regions of the striatum: the neocortex projects to the caudate-putamen; the mesocortex projects mainly to the medial and ventral regions of the caudate-putamen but also to the ventral striatum (nucleus accumens and olfactory tubercle); and the allocortex projects mainly to the ventral striatum but also to the medial and ventral parts of the caudate-putamen. Within each of these major projection systems there is a further organization, with the constituent parts of each major cortical region projecting to smaller longitudinal components of the major projection fields. Each neocortical area projects to a longitudinal region of the dorsal striatum (caudate-putamen): the sensory and motor areas project topographically onto the dorsolateral striatum such that the rostral sensorimotor cortex (head areas) projects to central and ventral regions and the more caudal sensorimotor cortex (limb areas) projects to dorsal regions of the dorsolateral striatum; the visual area projects to the dorsomedial striatum; and the auditory area projects to the medial striatum. Each mesocortical area projects to a longitudinal area of the striatum: the most posteromedial mesocortex (the retrosplenial area) projects to the dorsomedial striatum; more anterior and lateral parts of the mesocortex project to more ventral parts of the striatum: and the most lateral mesocortex (the agranular insular and perirhinal areas) project to the ventrolateral striatum.(ABSTRACT TRUNCATED AT 400 WORDS)
Similar articles
- Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input.
Kunishio K, Haber SN. Kunishio K, et al. J Comp Neurol. 1994 Dec 15;350(3):337-56. doi: 10.1002/cne.903500302. J Comp Neurol. 1994. PMID: 7533796 - Topographical organization of the projections from physiologically identified areas of the motor cortex to the striatum in the rat.
Ebrahimi A, Pochet R, Roger M. Ebrahimi A, et al. Neurosci Res. 1992 Jun;14(1):39-60. doi: 10.1016/s0168-0102(05)80005-7. Neurosci Res. 1992. PMID: 1380687 - The striato-entopeduncular pathway in the rat. A retrograde transport study with wheatgerm-agglutinin-horseradish peroxidase.
Fink-Jensen A, Mikkelsen JD. Fink-Jensen A, et al. Brain Res. 1989 Jan 2;476(1):194-8. doi: 10.1016/0006-8993(89)91558-8. Brain Res. 1989. PMID: 2464418 - Organization of subcortical pathways for sensory projections to the limbic cortex. I. Subcortical projections to the medial limbic cortex in the rat.
Thompson SM, Robertson RT. Thompson SM, et al. J Comp Neurol. 1987 Nov 8;265(2):175-88. doi: 10.1002/cne.902650203. J Comp Neurol. 1987. PMID: 3320108 Review. - The dopamine hypothesis of schizophrenia: limbic interactions with serotonin and norepinephrine.
Joyce JN. Joyce JN. Psychopharmacology (Berl). 1993;112(1 Suppl):S16-34. doi: 10.1007/BF02245004. Psychopharmacology (Berl). 1993. PMID: 7831438 Review.
Cited by
- Foraging under competition: the neural basis of input-matching in humans.
Mobbs D, Hassabis D, Yu R, Chu C, Rushworth M, Boorman E, Dalgleish T. Mobbs D, et al. J Neurosci. 2013 Jun 5;33(23):9866-72. doi: 10.1523/JNEUROSCI.2238-12.2013. J Neurosci. 2013. PMID: 23739983 Free PMC article. - Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior.
Gruber AJ, McDonald RJ. Gruber AJ, et al. Front Behav Neurosci. 2012 Aug 3;6:50. doi: 10.3389/fnbeh.2012.00050. eCollection 2012. Front Behav Neurosci. 2012. PMID: 22876225 Free PMC article. - CB1 Cannabinoid Receptor Expression in the Striatum: Association with Corticostriatal Circuits and Developmental Regulation.
Van Waes V, Beverley JA, Siman H, Tseng KY, Steiner H. Van Waes V, et al. Front Pharmacol. 2012 Mar 12;3:21. doi: 10.3389/fphar.2012.00021. eCollection 2012. Front Pharmacol. 2012. PMID: 22416230 Free PMC article. - Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training.
Bello-Medina PC, Flores G, Quirarte GL, McGaugh JL, Prado Alcalá RA. Bello-Medina PC, et al. Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6516-E6525. doi: 10.1073/pnas.1613680113. Epub 2016 Oct 3. Proc Natl Acad Sci U S A. 2016. PMID: 27698138 Free PMC article. - Differential innervation of direct- and indirect-pathway striatal projection neurons.
Wall NR, De La Parra M, Callaway EM, Kreitzer AC. Wall NR, et al. Neuron. 2013 Jul 24;79(2):347-60. doi: 10.1016/j.neuron.2013.05.014. Epub 2013 Jun 27. Neuron. 2013. PMID: 23810541 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources