A rosemary extract rich in carnosic acid selectively modulates caecum microbiota and inhibits β-glucosidase activity, altering fiber and short chain fatty acids fecal excretion in lean and obese female rats - PubMed (original) (raw)

A rosemary extract rich in carnosic acid selectively modulates caecum microbiota and inhibits β-glucosidase activity, altering fiber and short chain fatty acids fecal excretion in lean and obese female rats

María Romo-Vaquero et al. PLoS One. 2014.

Abstract

Background: Carnosic acid (CA) and rosemary extracts (RE) show body-weight, energy metabolism and inflammation regulatory properties in animal models but the mechanisms are not yet understood. Gut microbiota plays an important role in the host metabolism and inflammatory status and is modulated by the diet. The aim of this research was to investigate whether a RE enriched in CA affected caecum microbiota composition and activity in a rat model of genetic obesity.

Methods and principal findings: A RE (40% CA) was administered with the diet (0.5% w/w) to lean (fa/+) and obese (fa/fa) female Zucker rats for 64 days. Changes in the microbiota composition and β-glucosidase activity in the caecum and in the levels of macronutrients and short chain fatty acids (SCFA) in feces were examined. The RE increased the Blautia coccoides and Bacteroides/Prevotella groups and reduced the Lactobacillus/Leuconostoc/Pediococccus group in both types of animals. Clostridium leptum was significantly decreased and Bifidobacterium increased only in the lean rats. β-Glucosidase activity was significantly reduced and fecal fiber excretion increased in the two genotypes. The RE also increased the main SCFA excreted in the feces of the obese rats but decreased them in the lean rats reflecting important differences in the uptake and metabolism of these molecules between the two genotypes.

Conclusions: Our results indicate that the consumption of a RE enriched in CA modifies microbiota composition and decreases β-glucosidase activity in the caecum of female Zucker rats while it increases fiber fecal elimination. These results may contribute to explain the body weight gain reducing effects of the RE. The mutated leptin receptor of the obese animals significantly affects the microbiota composition, the SCFA fecal excretion and the host response to the RE intake.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have the following interests. Nicolas Issaly, John Flanagan and Marc Roller are employed by Naturex SL and Naturex SA. Naturex is involved in the research/development and marketing/sales of rosemary extracts as ingredients for the food, cosmetic, and nutraceutical industries. Therefore, Naturex has a commercial interest in this publication. The RE used in this study (reference GAX00011 batch number A273/045/A10) was kindly provided by Naturex. There are no further patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Figure 1

Figure 1. Effect of the RE-supplementation on full caecum, empty caecum and caecum content weight.

Obese (Ob) and lean (Le) female Zucker rats were fed a control diet (CT) or the diet supplemented with the rosemary extract (RE) enriched in carnosic acid (CA ∼40%). Values are expressed as g/100 g of body weight. Bars indicate mean values ± SD (n = 7 lean animals, n = 5 obese animals per group). Significant differences between control and RE-supplemented groups are also indicated: *P<0.05, **P<0.01, ***P<0.001.

Figure 2

Figure 2. Box-and-Whisker plots of the content of bacteria in the caecum of obese (Ob) and lean (Le) female Zucker rats fed a control diet (CT) or the diet supplemented with a rosemary extract (RE) enriched in CA (40%).

Caecum content of: A) Total bacteria (T bac) indicated as log10 of the value per gram of caecum content (fresh weight), B) Bifidobacterium genus, C) Lactobacillus/Leuconostoc/Pediococcus group, D) Clostridium leptum group, E) Blautia coccoides group and F) Bacteroides-Prevotella group. Results for each group are presented as relative abundance (%) of total bacteria. Horizontal lines represent the comparison between obese and lean rats. Significant differences are indicated by *P<0.05, **P<0.01, ***P<0.001. P values below 0.1are also displayed as indication of a trend.

Figure 3

Figure 3. Discriminant principal component analysis (PCA).

Analysis of the caecum bacterial groups in Zucker male obese (Ob) and lean (Le) rats and the serum triglycerides, cholesterol, leptin, insulin, adiponectin, TNF-α, and IL-1β previously measured in the same animals , . Plot analysis of the four animal groups: control lean rats (CTLe, open squares), RE-supplemented lean rats (RELe, black diamonds), control obese rats (CTOb, open triangles) and RE-supplemented obese rats (REOb, black circles).

Figure 4

Figure 4. Effect of the RE-supplementation on gut enzyme activity.

α-Amylase activity in the small intestine and β-glucosidase activity in the caecum of obese (Ob) and lean (Le) Zucker female rats. Results are shown as % of inhibition respect to the activity in the corresponding control (CT) group.

Figure 5

Figure 5. Effect of the RE-supplementation on SCFA fecal composition.

Results are shown as µg/g of feces f.w. (fresh weight) in obese (Ob) and lean (Le) female Zucker rats fed a control (CT) diet or the diet supplemented with the rosemary extract (RE) rich in carnosic acid (CA, ∼40%). Significant differences between groups are indicated by *P<0.05, **P<0.01.

Similar articles

Cited by

References

    1. Lee H, Lee IS, Choue R (2013) Obesity, inflammation and diet. Pediatr Gastroenterol Hepatol Nutr 16: 143–152. - PMC - PubMed
    1. Wright SM, Aronne LJ (2012) Causes of obesity. Abdom Imaging 37: 730–2. - PubMed
    1. Everard A, Cani PD (2013) Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 27: 73–83. - PubMed
    1. Kovatcheva-Datchary P, Arora T (2013) Nutrition, the gut microbiome and the metabolic syndrome. Best Pract Res Clin Gastroenterol 27: 59–72. - PubMed
    1. Tagliabue A, Elli M (2013) The role of gut microbiota in human obesity: recent findings and future perspectives. Nutr Metab Cardiovasc Dis 23: 160–8. - PubMed

Publication types

MeSH terms

Substances

Grants and funding

This project was financed by the Spanish Centre for the Development of Industrial Technology (CDTI) as part of the project SENIFOOD, which belongs to the CENIT subvention program (Ref: CEN-20091006). This work was also supported by the Project Consolider Ingenio 2010, CSD2007-00063 (Fun-C-Food) and by the Seneca Foundation of the Region of Murcia, Spain (Group of Excellence GERM 06 04486 and 05556/PI/04). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

LinkOut - more resources