Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment - PubMed (original) (raw)
. 2014 Sep;63(9):2996-3008.
doi: 10.2337/db13-0970. Epub 2014 Apr 16.
Maki Kimura-Koyanagi 2, Shun-Ichiro Asahara 2, Carlos Guillén 3, Hiroyuki Inoue 4, Kyoko Teruyama 4, Shinobu Shimizu 4, Ayumi Kanno 2, Ana García-Aguilar 3, Masato Koike 5, Yasuo Uchiyama 5, Manuel Benito 3, Tetsuo Noda 6, Yoshiaki Kido 7
Affiliations
- PMID: 24740570
- DOI: 10.2337/db13-0970
Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment
Alberto Bartolomé et al. Diabetes. 2014 Sep.
Abstract
Hyperactivation of the mammalian target of rapamycin complex 1 (mTORC1) in β-cells is usually found as a consequence of increased metabolic load. Although it plays an essential role in β-cell compensatory mechanisms, mTORC1 negatively regulates autophagy. Using a mouse model with β-cell-specific deletion of Tsc2 (βTsc2(-/-)) and, consequently, mTORC1 hyperactivation, we focused on the role that chronic mTORC1 hyperactivation might have on β-cell failure. mTORC1 hyperactivation drove an early increase in β-cell mass that later declined, triggering hyperglycemia. Apoptosis and endoplasmic reticulum stress markers were found in islets of older βTsc2(-/-) mice as well as accumulation of p62/SQSTM1 and an impaired autophagic response. Mitochondrial mass was increased in β-cells of βTsc2(-/-) mice, but mitophagy was also impaired under these circumstances. We provide evidence of β-cell autophagy impairment as a link between mTORC1 hyperactivation and mitochondrial dysfunction that probably contributes to β-cell failure.
© 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Similar articles
- Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent.
Parkhitko A, Myachina F, Morrison TA, Hindi KM, Auricchio N, Karbowniczek M, Wu JJ, Finkel T, Kwiatkowski DJ, Yu JJ, Henske EP. Parkhitko A, et al. Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12455-60. doi: 10.1073/pnas.1104361108. Epub 2011 Jul 11. Proc Natl Acad Sci U S A. 2011. PMID: 21746920 Free PMC article. - Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1.
Koyanagi M, Asahara S, Matsuda T, Hashimoto N, Shigeyama Y, Shibutani Y, Kanno A, Fuchita M, Mikami T, Hosooka T, Inoue H, Matsumoto M, Koike M, Uchiyama Y, Noda T, Seino S, Kasuga M, Kido Y. Koyanagi M, et al. PLoS One. 2011;6(8):e23238. doi: 10.1371/journal.pone.0023238. Epub 2011 Aug 19. PLoS One. 2011. PMID: 21886784 Free PMC article. - mTOR Hyperactivation by Ablation of Tuberous Sclerosis Complex 2 in the Mouse Heart Induces Cardiac Dysfunction with the Increased Number of Small Mitochondria Mediated through the Down-Regulation of Autophagy.
Taneike M, Nishida K, Omiya S, Zarrinpashneh E, Misaka T, Kitazume-Taneike R, Austin R, Takaoka M, Yamaguchi O, Gambello MJ, Shah AM, Otsu K. Taneike M, et al. PLoS One. 2016 Mar 29;11(3):e0152628. doi: 10.1371/journal.pone.0152628. eCollection 2016. PLoS One. 2016. PMID: 27023784 Free PMC article. - Role of the mammalian target of rapamycin (mTOR) complexes in pancreatic β-cell mass regulation.
Bartolome A, Guillén C. Bartolome A, et al. Vitam Horm. 2014;95:425-69. doi: 10.1016/B978-0-12-800174-5.00017-X. Vitam Horm. 2014. PMID: 24559928 Review. - Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.
Wang J, Yang X, Zhang J. Wang J, et al. Cell Signal. 2016 Aug;28(8):1099-104. doi: 10.1016/j.cellsig.2016.05.007. Epub 2016 May 14. Cell Signal. 2016. PMID: 27185188 Review.
Cited by
- Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus.
You S, Zheng J, Chen Y, Huang H. You S, et al. Front Endocrinol (Lausanne). 2022 Aug 18;13:976465. doi: 10.3389/fendo.2022.976465. eCollection 2022. Front Endocrinol (Lausanne). 2022. PMID: 36060972 Free PMC article. Review. - β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes.
Lee S, Xu H, Van Vleck A, Mawla AM, Li AM, Ye J, Huising MO, Annes JP. Lee S, et al. Diabetes. 2022 Jul 1;71(7):1439-1453. doi: 10.2337/db21-0834. Diabetes. 2022. PMID: 35472723 Free PMC article. - Urolithins: Diet-Derived Bioavailable Metabolites to Tackle Diabetes.
Raimundo AF, Ferreira S, Tomás-Barberán FA, Santos CN, Menezes R. Raimundo AF, et al. Nutrients. 2021 Nov 27;13(12):4285. doi: 10.3390/nu13124285. Nutrients. 2021. PMID: 34959837 Free PMC article. Review. - The role of autophagy in the treatment of type II diabetes and its complications: a review.
Zhao X, Bie LY, Pang DR, Li X, Yang LF, Chen DD, Wang YR, Gao Y. Zhao X, et al. Front Endocrinol (Lausanne). 2023 Sep 21;14:1228045. doi: 10.3389/fendo.2023.1228045. eCollection 2023. Front Endocrinol (Lausanne). 2023. PMID: 37810881 Free PMC article. Review. - The Hippo kinase LATS2 impairs pancreatic β-cell survival in diabetes through the mTORC1-autophagy axis.
Yuan T, Annamalai K, Naik S, Lupse B, Geravandi S, Pal A, Dobrowolski A, Ghawali J, Ruhlandt M, Gorrepati KDD, Azizi Z, Lim DS, Maedler K, Ardestani A. Yuan T, et al. Nat Commun. 2021 Aug 13;12(1):4928. doi: 10.1038/s41467-021-25145-x. Nat Commun. 2021. PMID: 34389720 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials