Catalytic activity is retained in the Tetrahymena group I intron despite removal of the large extension of element P5 - PubMed (original) (raw)
Catalytic activity is retained in the Tetrahymena group I intron despite removal of the large extension of element P5
G F Joyce et al. Nucleic Acids Res. 1989.
Free PMC article
Abstract
We have made sizeable internal deletions within the self-splicing group I intron of Tetrahymena thermophila. Deletions were made in a piecewise manner in order to remove secondary structural elements thought to be extraneous to the catalytic center of the molecule. The resulting deletion mutants retain self-splicing activity, albeit under modified reaction conditions that enhance duplex stability. Considering those portions of the molecule that can be deleted without a loss of catalytic activity, one is left with a catalytic center of approximately 130 nucleotides that is solely responsible for the molecule's activity.
Similar articles
- A region of group I introns that contains universally conserved residues but is not essential for self-splicing.
Williams KP, Fujimoto DN, Inoue T. Williams KP, et al. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10400-4. doi: 10.1073/pnas.89.21.10400. Proc Natl Acad Sci U S A. 1992. PMID: 1279677 Free PMC article. - Minimum secondary structure requirements for catalytic activity of a self-splicing group I intron.
Beaudry AA, Joyce GF. Beaudry AA, et al. Biochemistry. 1990 Jul 10;29(27):6534-9. doi: 10.1021/bi00479a027. Biochemistry. 1990. PMID: 2207095 - Self-splicing of group I introns.
Cech TR. Cech TR. Annu Rev Biochem. 1990;59:543-68. doi: 10.1146/annurev.bi.59.070190.002551. Annu Rev Biochem. 1990. PMID: 2197983 Review. No abstract available. - Nobel lecture. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena.
Cech TR. Cech TR. Biosci Rep. 1990 Jun;10(3):239-61. doi: 10.1007/BF01117241. Biosci Rep. 1990. PMID: 1699616 Review.
Cited by
- Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone.
Bhaskaran H, Russell R. Bhaskaran H, et al. Nature. 2007 Oct 25;449(7165):1014-8. doi: 10.1038/nature06235. Nature. 2007. PMID: 17960235 Free PMC article. - Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP.
Ikawa Y, Tsuda K, Matsumura S, Atsumi S, Inoue T. Ikawa Y, et al. Nucleic Acids Res. 2003 Mar 1;31(5):1488-96. doi: 10.1093/nar/gkg225. Nucleic Acids Res. 2003. PMID: 12595557 Free PMC article. - Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles.
Benz-Moy TL, Herschlag D. Benz-Moy TL, et al. Biochemistry. 2011 Oct 11;50(40):8733-55. doi: 10.1021/bi2008245. Epub 2011 Sep 19. Biochemistry. 2011. PMID: 21815635 Free PMC article. - Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
Legault P, Herschlag D, Celander DW, Cech TR. Legault P, et al. Nucleic Acids Res. 1992 Dec 25;20(24):6613-9. doi: 10.1093/nar/20.24.6613. Nucleic Acids Res. 1992. PMID: 1480482 Free PMC article. - A peripheral element assembles the compact core structure essential for group I intron self-splicing.
Xiao M, Li T, Yuan X, Shang Y, Wang F, Chen S, Zhang Y. Xiao M, et al. Nucleic Acids Res. 2005 Aug 12;33(14):4602-11. doi: 10.1093/nar/gki770. Print 2005. Nucleic Acids Res. 2005. PMID: 16100381 Free PMC article.
References
- EMBO J. 1983;2(1):33-8 - PubMed
- Science. 1989 Jul 21;245(4915):276-82 - PubMed
- J Biol Chem. 1982 May 25;257(10):5772-8 - PubMed
- Nature. 1982 Dec 23;300(5894):719-24 - PubMed
- Biochimie. 1982 Oct;64(10):867-81 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous