Tat trans-activates the human immunodeficiency virus through a nascent RNA target - PubMed (original) (raw)
Tat trans-activates the human immunodeficiency virus through a nascent RNA target
B Berkhout et al. Cell. 1989.
Abstract
Expression of the human immunodeficiency virus type 1 (HIV-1) genome is greatly dependent on the viral trans-activator protein Tat. Tat functions through the TAR element, which is represented in both viral DNA and RNA. At present, there is no definitive evidence that determines whether Tat acts through a DNA or RNA form of TAR. We have used an intramolecular mutagenesis approach to change selectively the RNA secondary structure of TAR without affecting its primary sequence. We show that a specific RNA secondary structure for TAR is needed for biological activity. Furthermore, transcripts that only transiently form a native TAR RNA hairpin, which is not maintained in the mature mRNA, are completely trans-activated by Tat, suggesting that TAR is recognized as a nascent RNA.
Similar articles
- RNA transcripts of the human immunodeficiency virus transactivation response element can inhibit action of the viral transactivator.
Graham GJ, Maio JJ. Graham GJ, et al. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5817-21. doi: 10.1073/pnas.87.15.5817. Proc Natl Acad Sci U S A. 1990. PMID: 1696012 Free PMC article. - Efficient trans-activation by the HIV-2 Tat protein requires a duplicated TAR RNA structure.
Berkhout B, Gatignol A, Silver J, Jeang KT. Berkhout B, et al. Nucleic Acids Res. 1990 Apr 11;18(7):1839-46. doi: 10.1093/nar/18.7.1839. Nucleic Acids Res. 1990. PMID: 2186367 Free PMC article. - Human immunodeficiency virus type 1 TAR element revertant viruses define RNA structures required for efficient viral gene expression and replication.
Harrich D, Mavankal G, Mette-Snider A, Gaynor RB. Harrich D, et al. J Virol. 1995 Aug;69(8):4906-13. doi: 10.1128/JVI.69.8.4906-4913.1995. J Virol. 1995. PMID: 7609059 Free PMC article. - RNA recognition and regulation of HIV-1 gene expression by viral factor Tat.
Naryshkin NA, Gait MJ, Ivanovskaya MG. Naryshkin NA, et al. Biochemistry (Mosc). 1998 May;63(5):489-503. Biochemistry (Mosc). 1998. PMID: 9632883 Review. - Tackling Tat.
Karn J. Karn J. J Mol Biol. 1999 Oct 22;293(2):235-54. doi: 10.1006/jmbi.1999.3060. J Mol Biol. 1999. PMID: 10550206 Review.
Cited by
- HIV-1 Transcription Inhibition Using Small RNA-Binding Molecules.
Khatkar P, Mensah G, Ning S, Cowen M, Kim Y, Williams A, Abulwerdi FA, Zhao Y, Zeng C, Le Grice SFJ, Kashanchi F. Khatkar P, et al. Pharmaceuticals (Basel). 2023 Dec 25;17(1):33. doi: 10.3390/ph17010033. Pharmaceuticals (Basel). 2023. PMID: 38256867 Free PMC article. - Association between different anti-Tat antibody isotypes and HIV disease progression: data from an African cohort.
Nicoli F, Chachage M, Clowes P, Bauer A, Kowour D, Ensoli B, Cafaro A, Maboko L, Hoelscher M, Gavioli R, Saathoff E, Geldmacher C. Nicoli F, et al. BMC Infect Dis. 2016 Jul 22;16:344. doi: 10.1186/s12879-016-1647-3. BMC Infect Dis. 2016. PMID: 27450538 Free PMC article. - HIV-1 Proviral Genome Engineering with CRISPR-Cas9 for Mechanistic Studies.
Hyder U, Shukla A, Challa A, D'Orso I. Hyder U, et al. Viruses. 2024 Feb 13;16(2):287. doi: 10.3390/v16020287. Viruses. 2024. PMID: 38400062 Free PMC article. - The E3 Ubiquitin-Protein Ligase Cullin 3 Regulates HIV-1 Transcription.
Langer S, Yin X, Diaz A, Portillo AJ, Gordon DE, Rogers UH, Marlett JM, Krogan NJ, Young JAT, Pache L, Chanda SK. Langer S, et al. Cells. 2020 Sep 1;9(9):2010. doi: 10.3390/cells9092010. Cells. 2020. PMID: 32882949 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources