Identification and validation of quantitative trait loci (QTL) for canine hip dysplasia (CHD) in German Shepherd Dogs - PubMed (original) (raw)

Identification and validation of quantitative trait loci (QTL) for canine hip dysplasia (CHD) in German Shepherd Dogs

Lena Fels et al. PLoS One. 2014.

Abstract

Canine hip dysplasia (CHD) is the most common hereditary skeletal disorder in dogs. To identify common alleles associated with CHD, we genotyped 96 German Shepherd Dogs affected by mild, moderate and severe CHD and 96 breed, sex, age and birth year matched controls using the Affymetrix canine high density SNP chip. A mixed linear model analysis identified five SNPs associated with CHD scores on dog chromosomes (CFA) 19, 24, 26 and 34. These five SNPs were validated in a by sex, age, birth year and coancestry stratified sample of 843 German Shepherd Dogs including 277 unaffected dogs and 566 CHD-affected dogs. Mean coancestry coefficients among and within cases and controls were <0.1%. Genotype effects of these SNPs explained 20-32% of the phenotypic variance of CHD in German Shepherd Dogs employed for validation. Genome-wide significance in the validation data set could be shown for each one CHD-associated SNP on CFA24, 26 and 34. These SNPs are located within or in close proximity of genes involved in bone formation and related through a joint network. The present study validated positional candidate genes within two previously known quantitative trait loci (QTL) and a novel QTL for CHD in German Shepherd Dogs.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1

Figure 1. Manhattan plot of –log10P-values of the genome-wide association study for the canine hip dysplasia score in German Shepherd Dogs using a mixed linear model analysis.

On the X-axis, the SNPs are given by dog chromosome number. The –log10P-values for each SNP genotype effect are plotted against the SNP position on each chromosome. Chromosomes are differentiated by colors. The color keys are given below the plot. The red line indicates a –log10P-value of 4.3 and the blue line indicates the threshold of the –log10P-values for genome-wide significance after correcting for multiple testing.

Similar articles

Cited by

References

    1. Janutta V, Distl O (2006) Inheritance of canine hip dysplasia: review of estimation methods and of heritability estimates and prospects on further developments. Dtsch tierärztl Wschr 113: 6–12. - PubMed
    1. Janutta V, Hamann H, Distl O (2008) Genetic and phenotypic trends in canine hip dysplasia in the German population of German shepherd dogs. Berl Münch tierärztl Wschr 121: 102–109. - PubMed
    1. Hamann H, Kirchhoff T, Distl O (2003) Bayesian analysis of heritability of canine hip dysplasia in German shepherd dogs. J Anim Breed Genet 120: 258–268.
    1. Stock KF, Klein S, Tellhelm B, Distl O (2011) Genetic analyses of elbow and hip dysplasia in the German shepherd dog. J Anim Breed Genet 128: 219–229. - PubMed
    1. Wilson BJ, Nicholas FW, James JW, Wade CM, Tammen I, et al. (2012) Heritability and phenotypic variation of canine hip dysplasia radiographic traits in a cohort of Australian German shepherd dogs. PLoS One 7(6): e39620. - PMC - PubMed

Publication types

MeSH terms

Grants and funding

This study was supported by the Gesellschaft zur Förderung Kynologischer Forschung e.V. (GKF), Bonn, Germany, and the Breeding Associaton of German Shepherd Dogs (Verein für Deutsche Schäferhunde e.V., SV), Augsburg, Germany. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

LinkOut - more resources