Horizontal genome transfer as an asexual path to the formation of new species - PubMed (original) (raw)
. 2014 Jul 10;511(7508):232-5.
doi: 10.1038/nature13291. Epub 2014 Jun 8.
Affiliations
- PMID: 24909992
- DOI: 10.1038/nature13291
Horizontal genome transfer as an asexual path to the formation of new species
Ignacia Fuentes et al. Nature. 2014.
Abstract
Allopolyploidization, the combination of the genomes from two different species, has been a major source of evolutionary innovation and a driver of speciation and environmental adaptation. In plants, it has also contributed greatly to crop domestication, as the superior properties of many modern crop plants were conferred by ancient allopolyploidization events. It is generally thought that allopolyploidization occurred through hybridization events between species, accompanied or followed by genome duplication. Although many allopolyploids arose from closely related species (congeners), there are also allopolyploid species that were formed from more distantly related progenitor species belonging to different genera or even different tribes. Here we have examined the possibility that allopolyploidization can also occur by asexual mechanisms. We show that upon grafting--a mechanism of plant-plant interaction that is widespread in nature--entire nuclear genomes can be transferred between plant cells. We provide direct evidence for this process resulting in speciation by creating a new allopolyploid plant species from a herbaceous species and a woody species in the nightshade family. The new species is fertile and produces fertile progeny. Our data highlight natural grafting as a potential asexual mechanism of speciation and also provide a method for the generation of novel allopolyploid crop species.
Comment in
- Plant genetics: joining forces - asexual genome merger creates new allopolyploid species.
Jones B. Jones B. Nat Rev Genet. 2014 Aug;15(8):515. doi: 10.1038/nrg3782. Epub 2014 Jun 24. Nat Rev Genet. 2014. PMID: 24958439 No abstract available.
Similar articles
- Plant genetics: joining forces - asexual genome merger creates new allopolyploid species.
Jones B. Jones B. Nat Rev Genet. 2014 Aug;15(8):515. doi: 10.1038/nrg3782. Epub 2014 Jun 24. Nat Rev Genet. 2014. PMID: 24958439 No abstract available. - Island species radiation and karyotypic stasis in Pachycladon allopolyploids.
Mandáková T, Heenan PB, Lysak MA. Mandáková T, et al. BMC Evol Biol. 2010 Nov 29;10:367. doi: 10.1186/1471-2148-10-367. BMC Evol Biol. 2010. PMID: 21114825 Free PMC article. - High-frequency gene transfer from the chloroplast genome to the nucleus.
Stegemann S, Hartmann S, Ruf S, Bock R. Stegemann S, et al. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8828-33. doi: 10.1073/pnas.1430924100. Epub 2003 Jun 19. Proc Natl Acad Sci U S A. 2003. PMID: 12817081 Free PMC article. - Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies.
Matsuoka Y, Takumi S, Nasuda S. Matsuoka Y, et al. Int Rev Cell Mol Biol. 2014;309:199-258. doi: 10.1016/B978-0-12-800255-1.00004-1. Int Rev Cell Mol Biol. 2014. PMID: 24529724 Review. - Genome evolution due to allopolyploidization in wheat.
Feldman M, Levy AA. Feldman M, et al. Genetics. 2012 Nov;192(3):763-74. doi: 10.1534/genetics.112.146316. Genetics. 2012. PMID: 23135324 Free PMC article. Review.
Cited by
- Detailed Profiling of 17-Hydroxygeranyllinalool Diterpene Glycosides from Nicotiana Species Reveals Complex Reaction Networks of Conjugation Isomers.
Ebert A, Alseekh S, D'Andrea L, Roessner U, Bock R, Kopka J. Ebert A, et al. Metabolites. 2024 Oct 20;14(10):562. doi: 10.3390/metabo14100562. Metabolites. 2024. PMID: 39452943 Free PMC article. - Horizontal gene transfer from genetically modified plants - Regulatory considerations.
Philips JG, Martin-Avila E, Robold AV. Philips JG, et al. Front Bioeng Biotechnol. 2022 Aug 31;10:971402. doi: 10.3389/fbioe.2022.971402. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36118580 Free PMC article. - Comparative study on comprehensive quality of Xinhui chenpi by two main plant propagation techniques.
Tan EY, Li F, Lin X, Ma S, Zhang G, Zhou H, Ouyang Y, Tang Z, Cheng Q. Tan EY, et al. Food Sci Nutr. 2022 Nov 20;11(2):1104-1112. doi: 10.1002/fsn3.3148. eCollection 2023 Feb. Food Sci Nutr. 2022. PMID: 36789071 Free PMC article. - Comparative Transcriptome Analysis in Homo- and Hetero-Grafted Cucurbit Seedlings.
Bantis F, Tsiolas G, Mouchtaropoulou E, Tsompanoglou I, Polidoros AN, Argiriou A, Koukounaras A. Bantis F, et al. Front Plant Sci. 2021 Oct 28;12:691069. doi: 10.3389/fpls.2021.691069. eCollection 2021. Front Plant Sci. 2021. PMID: 34777405 Free PMC article. - Grafting: a potential method to reveal the differential accumulation mechanism of secondary metabolites.
Dong D, Shi YN, Mou ZM, Chen SY, Zhao DK. Dong D, et al. Hortic Res. 2022 Feb 28;9:uhac050. doi: 10.1093/hr/uhac050. eCollection 2022. Hortic Res. 2022. PMID: 35591927 Free PMC article.
References
- Planta. 2013 Sep;238(3):415-23 - PubMed
- Genetica. 2005 Feb;123(1-2):191-6 - PubMed
- Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2434-8 - PubMed
- EMBO J. 1986 Sep;5(9):2043-2049 - PubMed
- Plant Cell. 1994 Oct;6(10):1477-1484 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources