Structure and function of the Zn(II) binding site within the DNA-binding domain of the GAL4 transcription factor - PubMed (original) (raw)
Structure and function of the Zn(II) binding site within the DNA-binding domain of the GAL4 transcription factor
T Pan et al. Proc Natl Acad Sci U S A. 1989 May.
Abstract
The transcription factor GAL4 from Saccharomyces cerevisiae contains a "zinc-finger"-like motif, Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-Cys-Xaa2-Cys-Xaa6+ ++-Cys, within its DNA-binding domain. A GAL4 fragment consisting of residues 1-147 plus two additional residues from the cloning vector [denoted GAL4(149*)] has been cloned and overexpressed in Escherichia coli. This fragment includes the entire DNA-binding domain (residues 1-74). The homogeneous GAL4-(149*) protein contains 1-1.5 moles of Zn(II) per mole of protein. The GAL4(149*) protein binds tightly to the specific 17-base-pair palindromic DNA sequence found at GAL4 binding sites as shown by gel-retention assays using a 32P-labeled 23-mer containing this sequence. Removal of the intrinsic Zn(II) by EDTA at low pH abolishes binding to the 23-mer. The GAL4(149*) apoprotein can be reconstituted with Zn(II), Cd(II), or Co(II) with restoration of specific DNA binding. Titration of GAL4(149*) apoprotein with 113Cd(II) shows two 113Cd(II) binding sites on the molecule, one with delta of 707 ppm, suggesting coordination to four sulfur atoms, and one with delta of 669 ppm, suggesting coordination to three or four sulfur atoms. Because GAL4(149*) protein contains only six cysteine residues within its DNA-binding domain, the precise coordination of the two Cd(II) ions cannot be stated with certainty; one or more shared -S- ligands could exist. GAL4(149*) protein contains approximately 40% alpha-helix and approximately 20% beta-sheet, estimated from circular dichroism. Removal of the native Zn(II) ion causes limited unfolding of secondary structure, but less than one turn of alpha-helix. The binding of Zn(II), Cd(II), and, to a lesser extent, Co(II) to GAL4(149*) apoprotein protects the protein from proteolysis by trypsin, which produces a 13-kDa DNA-binding core.
Similar articles
- GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)2Cys6 binuclear cluster.
Pan T, Coleman JE. Pan T, et al. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2077-81. doi: 10.1073/pnas.87.6.2077. Proc Natl Acad Sci U S A. 1990. PMID: 2107541 Free PMC article. - The DNA binding domain of GAL4 forms a binuclear metal ion complex.
Pan T, Coleman JE. Pan T, et al. Biochemistry. 1990 Mar 27;29(12):2023-9. doi: 10.1021/bi00464a019. Biochemistry. 1990. PMID: 2186803 - Structure of the binuclear metal-binding site in the GAL4 transcription factor.
Gardner KH, Pan T, Narula S, Rivera E, Coleman JE. Gardner KH, et al. Biochemistry. 1991 Nov 26;30(47):11292-302. doi: 10.1021/bi00111a015. Biochemistry. 1991. PMID: 1958667 - Finger-loops, oncogenes, and metals. Claude Passmore Brown memorial lecture.
Sunderman FW Jr, Barber AM. Sunderman FW Jr, et al. Ann Clin Lab Sci. 1988 Jul-Aug;18(4):267-88. Ann Clin Lab Sci. 1988. PMID: 2841900 Review. - SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes.
Makarova KS, Aravind L, Koonin EV. Makarova KS, et al. Trends Biochem Sci. 2002 Aug;27(8):384-6. doi: 10.1016/s0968-0004(02)02140-0. Trends Biochem Sci. 2002. PMID: 12151216 Review.
Cited by
- Enhancer and promoter elements from simian virus 40 and polyomavirus can substitute for an upstream activation sequence in Saccharomyces cerevisiae.
Axelrod NJ, Carmichael GG, Farabaugh PJ. Axelrod NJ, et al. Mol Cell Biol. 1990 Mar;10(3):947-57. doi: 10.1128/mcb.10.3.947-957.1990. Mol Cell Biol. 1990. PMID: 2154686 Free PMC article. - Interaction of the Srb10 kinase with Sip4, a transcriptional activator of gluconeogenic genes in Saccharomyces cerevisiae.
Vincent O, Kuchin S, Hong SP, Townley R, Vyas VK, Carlson M. Vincent O, et al. Mol Cell Biol. 2001 Sep;21(17):5790-6. doi: 10.1128/MCB.21.17.5790-5796.2001. Mol Cell Biol. 2001. PMID: 11486018 Free PMC article. - Rapid GAL gene switch of Saccharomyces cerevisiae depends on nuclear Gal3, not nucleocytoplasmic trafficking of Gal3 and Gal80.
Egriboz O, Jiang F, Hopper JE. Egriboz O, et al. Genetics. 2011 Nov;189(3):825-36. doi: 10.1534/genetics.111.131839. Epub 2011 Sep 2. Genetics. 2011. PMID: 21890741 Free PMC article. - Detection of two Zn-finger proteins of Xenopus laevis, TFIIIA, and p43, by probing western blots of ovary cytosol with 65Zn2+, 63Ni2+, or 109Cd2+.
Makowski GS, Lin SM, Brennan SM, Smilowitz HM, Hopfer SM, Sunderman FW Jr. Makowski GS, et al. Biol Trace Elem Res. 1991 May;29(2):93-109. doi: 10.1007/BF03032687. Biol Trace Elem Res. 1991. PMID: 1713475 - A physico-chemical investigation of the self-association of the DNA binding domain of the yeast transcriptional activator GAL4.
Gadhavi P, Morgan PJ, Alefounder P, Harding SE. Gadhavi P, et al. Eur Biophys J. 1996;24(6):405-12. doi: 10.1007/BF00576712. Eur Biophys J. 1996. PMID: 8765712
References
- Biochemistry. 1969 Oct;8(10):4108-16 - PubMed
- Biochemistry. 1989 Mar 21;28(6):2410-8 - PubMed
- Nucleic Acids Res. 1981 Dec 11;9(23):6505-25 - PubMed
- Mol Cell Biol. 1984 Feb;4(2):260-7 - PubMed
- J Biol Chem. 1984 Apr 25;259(8):4822-6 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous