Evaluation of different mathematical models for diffusion-weighted imaging of normal prostate and prostate cancer using high b-values: a repeatability study - PubMed (original) (raw)
. 2015 May;73(5):1988-98.
doi: 10.1002/mrm.25323. Epub 2014 Jul 12.
Affiliations
- PMID: 25046482
- DOI: 10.1002/mrm.25323
Free article
Evaluation of different mathematical models for diffusion-weighted imaging of normal prostate and prostate cancer using high b-values: a repeatability study
Ivan Jambor et al. Magn Reson Med. 2015 May.
Free article
Abstract
Purpose: To evaluate monoexponential, stretched exponential, kurtosis, and biexponential models for diffusion-weighted imaging (DWI) of normal prostate and prostate cancer (PCa), using b-values up to 2000 s/mm(2) , in terms of fitting quality and repeatability.
Methods: Eight healthy volunteers and 16 PCa patients underwent a total of four repeated 3T DWI examinations using 16 and 12 b-values, respectively. The highest b-value was 2000 s/mm(2) . The normalized mean signal intensities of regions of interest, placed in normal tissue and PCa using anatomical images and prostatectomy sections, were fitted using the four models. The fitting quality was evaluated using Akaike information criteria and F-ratio. Repeatability of the fitted parameters was evaluated using intraclass correlation coefficient ICC(3,1).
Results: The biexponential model provided the best fit to normal prostate and PCa DWI data. The parameters of the monoexponential, kurtosis, and stretched exponential (with the exception of the α parameter) models had higher ICC(3,1) values compared with the biexponential model. The kurtosis model provided a better fit to DWI data of normal prostate and PCa than the monoexponential model, whereas these models had comparable reliability and repeatability based on ICC(3,1) values.
Conclusion: Considering the model fit and repeatability, the kurtosis model seems to be the preferred model for characterization of normal prostate and PCa DWI using b-values up to 2000 s/mm(2) .
Keywords: Akaike information criteria; diffusion-weighted imaging; intraclass correlation coefficient; normal prostate; prostate cancer; repeatability.
© 2014 Wiley Periodicals, Inc.
Similar articles
- Mathematical models for diffusion-weighted imaging of prostate cancer using b values up to 2000 s/mm(2) : correlation with Gleason score and repeatability of region of interest analysis.
Toivonen J, Merisaari H, Pesola M, Taimen P, Boström PJ, Pahikkala T, Aronen HJ, Jambor I. Toivonen J, et al. Magn Reson Med. 2015 Oct;74(4):1116-24. doi: 10.1002/mrm.25482. Epub 2014 Oct 20. Magn Reson Med. 2015. PMID: 25329932 - Diffusion-weighted imaging of prostate cancer: effect of b-value distribution on repeatability and cancer characterization.
Merisaari H, Toivonen J, Pesola M, Taimen P, Boström PJ, Pahikkala T, Aronen HJ, Jambor I. Merisaari H, et al. Magn Reson Imaging. 2015 Dec;33(10):1212-1218. doi: 10.1016/j.mri.2015.07.004. Epub 2015 Jul 26. Magn Reson Imaging. 2015. PMID: 26220861 - Multiparametric MRI in the Diagnosis of Prostate Cancer: Physical Foundations, Limitations, and Prospective Advances of Diffusion-Weighted MRI.
Wichtmann BD, Zöllner FG, Attenberger UI, Schönberg SO. Wichtmann BD, et al. Rofo. 2021 Apr;193(4):399-409. doi: 10.1055/a-1276-1773. Epub 2020 Dec 10. Rofo. 2021. PMID: 33302312 Review. English. - Computed Diffusion-Weighted Imaging in Prostate Cancer: Basics, Advantages, Cautions, and Future Prospects.
Ueno YR, Tamada T, Takahashi S, Tanaka U, Sofue K, Kanda T, Nogami M, Ohno Y, Hinata N, Fujisawa M, Murakami T. Ueno YR, et al. Korean J Radiol. 2018 Sep-Oct;19(5):832-837. doi: 10.3348/kjr.2018.19.5.832. Epub 2018 Aug 6. Korean J Radiol. 2018. PMID: 30174471 Free PMC article. Review.
Cited by
- VERDICT MRI for Prostate Cancer: Intracellular Volume Fraction versus Apparent Diffusion Coefficient.
Johnston EW, Bonet-Carne E, Ferizi U, Yvernault B, Pye H, Patel D, Clemente J, Piga W, Heavey S, Sidhu HS, Giganti F, O'Callaghan J, Brizmohun Appayya M, Grey A, Saborowska A, Ourselin S, Hawkes D, Moore CM, Emberton M, Ahmed HU, Whitaker H, Rodriguez-Justo M, Freeman A, Atkinson D, Alexander D, Panagiotaki E, Punwani S. Johnston EW, et al. Radiology. 2019 May;291(2):391-397. doi: 10.1148/radiol.2019181749. Epub 2019 Apr 2. Radiology. 2019. PMID: 30938627 Free PMC article. - Optimized bias and signal inference in diffusion-weighted image analysis (OBSIDIAN).
Kuczera S, Alipoor M, Langkilde F, Maier SE. Kuczera S, et al. Magn Reson Med. 2021 Nov;86(5):2716-2732. doi: 10.1002/mrm.28773. Epub 2021 Jul 18. Magn Reson Med. 2021. PMID: 34278590 Free PMC article. - Added value of histogram analysis of intravoxel incoherent motion and diffusion kurtosis imaging for the evaluation of complete response to neoadjuvant therapy in locally advanced rectal cancer.
Zhang L, Jin Z, Yang F, Guo Y, Liu Y, Chen M, Xu S, Lin Z, Sun P, Yang M, Zhang P, Tao K, Zhang T, Li X, Zheng C. Zhang L, et al. Eur Radiol. 2024 Sep 19. doi: 10.1007/s00330-024-11081-z. Online ahead of print. Eur Radiol. 2024. PMID: 39297948 - Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization.
Toivonen J, Montoya Perez I, Movahedi P, Merisaari H, Pesola M, Taimen P, Boström PJ, Pohjankukka J, Kiviniemi A, Pahikkala T, Aronen HJ, Jambor I. Toivonen J, et al. PLoS One. 2019 Jul 8;14(7):e0217702. doi: 10.1371/journal.pone.0217702. eCollection 2019. PLoS One. 2019. PMID: 31283771 Free PMC article. Clinical Trial. - A Modified Tri-Exponential Model for Multi-_b_-value Diffusion-Weighted Imaging: A Method to Detect the Strictly Diffusion-Limited Compartment in Brain.
Zeng Q, Shi F, Zhang J, Ling C, Dong F, Jiang B. Zeng Q, et al. Front Neurosci. 2018 Feb 26;12:102. doi: 10.3389/fnins.2018.00102. eCollection 2018. Front Neurosci. 2018. PMID: 29535599 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical