Calcium regulation of skeletal myogenesis. I. Cell content critical to myotube formation - PubMed (original) (raw)
Calcium regulation of skeletal myogenesis. I. Cell content critical to myotube formation
R J Przybylski et al. In Vitro Cell Dev Biol. 1989 Sep.
Abstract
Primary cultures of embryonic chick pectoral skeletal muscle were used to study calcium regulation of myoblast fusion to form multinucleated myotubes. Using atomic absorption spectrometry to measure total cellular calcium and the 45Ca-exchange method to determine free cellular Ca++, our data suggest that only the free cellular calcium changes significantly during development under conditions permissive for myotube formation (0.9 mM external Ca++). Increases in calcium uptake occurred before and toward the end of the period of fusion with the amount approximating 2 to 4 pmol per cell in mass cultures. If the medium [Ca++] is decreased to 0.04 mM, as determined with a calcium electrode, a fusion-block is produced and free cell Ca++ decreased 5- to 10-fold. Removal of the fusion-block by increasing medium [Ca++] results in a release of the fusion-block and an increase in cellular Ca++ to approximately 1 pmol per cell during fusion, and higher thereafter. Cation ionophore A23187 produced transient increases in cellular calcium and stimulated myoblast fusion and the final extent of myotube formation only when added at the onset of culture. Results suggest that transient increased calcium uptake alone is insufficient for fusion because critical cellular content in conjunction with permissive amounts of medium [Ca++] must exist. The latter suggests further that cell surface Ca++ was also critical.
Similar articles
- Calcium regulation of skeletal myogenesis. II. Extracellular and cell surface effects.
Przybylski RJ, Szigeti V, Davidheiser S, Kirby AC. Przybylski RJ, et al. Cell Calcium. 1994 Feb;15(2):132-42. doi: 10.1016/0143-4160(94)90052-3. Cell Calcium. 1994. PMID: 8149413 - The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins.
Knudsen KA. Knudsen KA. J Cell Biol. 1985 Sep;101(3):891-7. doi: 10.1083/jcb.101.3.891. J Cell Biol. 1985. PMID: 4030897 Free PMC article. - Calcium regulation of skeletal myogenesis: IV. A defined culture medium permissive for myotube formation and the use of the calcium antagonist lanthanum.
Przybylski RJ, Szigeti V, Kirby AC. Przybylski RJ, et al. In Vitro Cell Dev Biol. 1986 Jul;22(7):402-6. doi: 10.1007/BF02623530. In Vitro Cell Dev Biol. 1986. PMID: 3733637 - Influence of the ionophore A 23 187 on myogenic cell fusion.
Schudt O, Pette D. Schudt O, et al. FEBS Lett. 1975 Nov 1;59(1):36-8. doi: 10.1016/0014-5793(75)80335-8. FEBS Lett. 1975. PMID: 773693 No abstract available. - The Role of Embryonic Chick Muscle Cell Culture in the Study of Skeletal Myogenesis.
Costa ML, Jurberg AD, Mermelstein C. Costa ML, et al. Front Physiol. 2021 May 20;12:668600. doi: 10.3389/fphys.2021.668600. eCollection 2021. Front Physiol. 2021. PMID: 34093232 Free PMC article. Review.
Cited by
- Ascorbic acid facilitates chicken myoblast fusion in vitro.
MacBride RG. MacBride RG. In Vitro Cell Dev Biol. 1989 Jul;25(7):617-20. doi: 10.1007/BF02623631. In Vitro Cell Dev Biol. 1989. PMID: 2753849 - The LRRC8/VRAC anion channel facilitates myogenic differentiation of murine myoblasts by promoting membrane hyperpolarization.
Chen L, Becker TM, Koch U, Stauber T. Chen L, et al. J Biol Chem. 2019 Sep 27;294(39):14279-14288. doi: 10.1074/jbc.RA119.008840. Epub 2019 Aug 6. J Biol Chem. 2019. PMID: 31387946 Free PMC article. - Functional myotube formation from adult rat satellite cells in a defined serum-free system.
McAleer CW, Rumsey JW, Stancescu M, Hickman JJ. McAleer CW, et al. Biotechnol Prog. 2015 Jul-Aug;31(4):997-1003. doi: 10.1002/btpr.2063. Epub 2015 Mar 4. Biotechnol Prog. 2015. PMID: 25683642 Free PMC article. - Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion.
Liu JH, Bijlenga P, Fischer-Lougheed J, Occhiodoro T, Kaelin A, Bader CR, Bernheim L. Liu JH, et al. J Physiol. 1998 Jul 15;510 ( Pt 2)(Pt 2):467-76. doi: 10.1111/j.1469-7793.1998.467bk.x. J Physiol. 1998. PMID: 9705997 Free PMC article. - Transcriptional states and chromatin accessibility during bovine myoblasts proliferation and myogenic differentiation.
Li Q, Wang Y, Hu X, Zhang Y, Li H, Zhang Q, Cai W, Wang Z, Zhu B, Xu L, Gao X, Chen Y, Gao H, Li J, Zhang L. Li Q, et al. Cell Prolif. 2022 May;55(5):e13219. doi: 10.1111/cpr.13219. Epub 2022 Apr 1. Cell Prolif. 2022. PMID: 35362202 Free PMC article.
References
- Dev Biol. 1965 Aug;12(1):154-84 - PubMed
- Dev Biol. 1977 Sep;59(2):241-8 - PubMed
- Exp Cell Res. 1971 May;66(1):33-48 - PubMed
- J Cell Biol. 1980 Jun;85(3):617-25 - PubMed
- Dev Biol. 1979 Nov;73(1):134-52 - PubMed