Clinical utility of brachial-ankle pulse wave velocity in the prediction of cardiovascular events in diabetic patients - PubMed (original) (raw)

Clinical utility of brachial-ankle pulse wave velocity in the prediction of cardiovascular events in diabetic patients

Naoto Katakami et al. Cardiovasc Diabetol. 2014.

Abstract

Background: Brachial-ankle pulse wave velocity (baPWV) is a method to estimate arterial stiffness, which reflects the stiffness of both the aorta and peripheral artery; it would be applicable to general practice, since its measurementis automated. The aim of this study was to evaluate whether baPWV can be predictors of future cardiovascular events (CVE) in diabetic patients.

Methods: We prospectively evaluated the association between baPWV or carotid intima-media thickness (carotid IMT) at baseline and new onset of CVE in 1040 type 2 diabetic patients without CVE. The predictability of baPWV and/or carotid IMT for identifying patients at high risk for CVE was evaluated by time-dependent receiver-operating-characteristic (ROC) curve analysis.

Results: During a median follow-up of 7.5 years, 113 had new CVD events. The cumulative incidence rates of CVE were significantly higher in patients with high baPWV values (≥1550 cm/s) as compared to those with low baPWV values (<1550 cm/s) (p < 0.001, log-rank test). Similarly, the cumulative incidence rate of CVE was significantly higher in patients with higher maximum carotid IMT (maxIMT) values (≥1.0 mm) as compared to those with lower maxIMT values (<1.0 mm) (p < 0.001, log-rank test). Subjects with both "high PWV" and "high IMT" had a significantly higher risk of developing CVE as compared to those with either "high PWV" or "high IMT," as well as those with neither. A multivariate Cox proportional hazards regression model revealed that both baPWV (HR = 1.30, [95%CI: 1.07-1.57]; p = 0.009) and maxIMT (HR = 1.20, [95%CI: 1.01-1.41]; p = 0.033) were independent predictors for CVE, even after adjustment for the conventional risk factors. Time-dependent ROC curve analyses revealed that the addition of maxIMT to the Framingham risk score resulted in significant increase in AUC (from 0.60 [95%CI: 0.54-0.67] to 0.63 [95%CI: 0.60-0.82]; p = 0.01). Notably, the addition of baPWV to the Framingham risk score and maxIMT resulted in further and significant (p = 0.02) increase in AUC (0.72 [95%CI: 0.67-0.78]).

Conclusions: Evaluation of baPWV, in addition to carotid IMT and conventional risk factors, improved the ability to identify the diabetic individuals with high risk for CVE.

PubMed Disclaimer

Figures

Figure 1

Figure 1

Kaplan-Meier curves depicting the cumulative probability of cardiovascular events. A The risk for cardiovascular events was significantly greater in patients with higher baPWV values (bold line) (≥1550 cm/s, n = 520) compared to those with lower baPWV values (thin line) (<1550 cm/s, n = 520) (p < 0.001, log-rank test). B The risk for cardiovascular events was significantly greater in patients with higher maxIMT values (bold line) (≥1.0 mm, n = 580) compared to those with lower maxIMT values (thin line) (<1.0 mm, n = 460) (p < 0.001, log-rank test). C The cumulative incidence rate of cardiovascular events was significantly greater in the patients with “high baPWV and low maxIMT (baPWV ≥1550 cm/s and maxIMT <1.0 mm, n = 181)” (dotted line) compared to those with “low baPWV and low maxIMT (baPWV <1550 cm/s and maxIMT <1.0 mm, n = 279)” (thin gray line) (p = 0.030, log-rank test). The patients with “low baPWV and high maxIMT (baPWV <1550 cm/s and maxIMT ≥1.0 mm, n = 241)” (thin black line) also showed a tendency towards a higher risk compared to those with “low baPWV and low maxIMT” (p = 0.071, log-rank test). The cumulative incidence rate of cardiovascular events was significantly higher in the patients with “high baPWV and high maxIMT (baPWV ≥1550 cm/s and maxIMT ≥1.0 mm, n=580)” (bold black line) compared to the other 3 groups.

Figure 2

Figure 2

Time-dependent ROC curves for predicting cardiovascular events. ROC curves were based on models of the predictability for cardiovascular events with the use of FRS alone; FRS and maxIMT; or FRS, maxIMT, and baPWV. The AUCs for cardiovascular events were 0.60 [95%CI: 0.54-0.67] (FRS alone), 0.63 [95% CI: 0.60-0.82] (FRS and maxIMT), and 0.72 [95%CI: 0.67-0.78] (FRS, maxIMT, and baPWV). The addition of maxIMT alone to FRS resulted in a significant increase in AUC (ΔAUC 0.03 [95% CI: 0.01 to 0.11]; p = 0.01). Addition of baPWV to the FRS and maxIMT resulted in a further significant increase in AUC (0.08 [95% CI: 0.01 to 0.11]; p = 0.02).

Similar articles

Cited by

References

    1. Stephens JW, Ambler G, Vallance P, Betteridge DJ, Humphries SE, Hurel SJ. Cardiovascular risk and diabetes. are the methods of risk prediction satisfactory? Eur J Cardiovasc Prev Rehabil. 2004;11:521–528. - PubMed
    1. Simmons RK, Coleman RL, Price HC, Holman RR, Khaw KT, Wareham NJ, Griffin SJ. Performance of the UK Prospective Diabetes Study risk engine and the Framingham risk equations in estimating cardiovascular disease in the EPIC- Norfolk Cohort. Diabetes Care. 2009;32:708–713. doi: 10.2337/dc08-1918. - DOI - PMC - PubMed
    1. van Dieren S, Peelen LM, Nöthlings U, van der Schouw YT, Rutten GE, Spijkerman AM, van der ADL, Sluik D, Boeing H, Moons KG, Beulens JW. External validation of the UK Prospective Diabetes Study (UKPDS) risk engine in patients with type 2 diabetes. Diabetologia. 2011;54:264–270. doi: 10.1007/s00125-010-1960-0. - DOI - PMC - PubMed
    1. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–1241. doi: 10.1161/01.HYP.37.5.1236. - DOI - PubMed
    1. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H. European network for non-invasive investigation of large arteries. expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–2605. doi: 10.1093/eurheartj/ehl254. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources