Chemical-proteomic strategies to investigate cysteine posttranslational modifications - PubMed (original) (raw)
Review
. 2014 Dec;1844(12):2315-30.
doi: 10.1016/j.bbapap.2014.09.024. Epub 2014 Oct 5.
Affiliations
- PMID: 25291386
- DOI: 10.1016/j.bbapap.2014.09.024
Review
Chemical-proteomic strategies to investigate cysteine posttranslational modifications
Shalise M Couvertier et al. Biochim Biophys Acta. 2014 Dec.
Abstract
The unique combination of nucleophilicity and redox-sensitivity that is characteristic of cysteine residues results in a variety of posttranslational modifications (PTMs), including oxidation, nitrosation, glutathionylation, prenylation, palmitoylation and Michael adducts with lipid-derived electrophiles (LDEs). These PTMs regulate the activity of diverse protein families by modulating the reactivity of cysteine nucleophiles within active sites of enzymes, and governing protein localization between soluble and membrane-bound forms. Many of these modifications are highly labile, sensitive to small changes in the environment, and dynamic, rendering it difficult to detect these modified species within a complex proteome. Several chemical-proteomic platforms have evolved to study these modifications and enable a better understanding of the diversity of proteins that are regulated by cysteine PTMs. These platforms include: (1) chemical probes to selectively tag PTM-modified cysteines; (2) differential labeling platforms that selectively reveal and tag PTM-modified cysteines; (3) lipid, isoprene and LDE derivatives containing bioorthogonal handles; and (4) cysteine-reactivity profiling to identify PTM-induced decreases in cysteine nucleophilicity. Here, we will provide an overview of these existing chemical-proteomic strategies and their effectiveness at identifying PTM-modified cysteine residues within native biological systems.
Keywords: Glutathionylation; Lipid-derived electrophile; Nitrosation; Oxidation; Palmitoylation; Prenylation.
Copyright © 2014 Elsevier B.V. All rights reserved.
Similar articles
- ROSics: chemistry and proteomics of cysteine modifications in redox biology.
Kim HJ, Ha S, Lee HY, Lee KJ. Kim HJ, et al. Mass Spectrom Rev. 2015 Mar-Apr;34(2):184-208. doi: 10.1002/mas.21430. Epub 2014 Jun 10. Mass Spectrom Rev. 2015. PMID: 24916017 Free PMC article. Review. - Applications of Reactive Cysteine Profiling.
Backus KM. Backus KM. Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120. Curr Top Microbiol Immunol. 2019. PMID: 30105421 Review. - Chemical proteomic identification of functional cysteines with atypical electrophile reactivities.
Litwin K, Crowley VM, Suciu RM, Boger DL, Cravatt BF. Litwin K, et al. Tetrahedron Lett. 2021 Mar 16;67:152861. doi: 10.1016/j.tetlet.2021.152861. Epub 2021 Feb 4. Tetrahedron Lett. 2021. PMID: 33776155 Free PMC article. - Thiol-based posttranslational modifications in parasites.
Jortzik E, Wang L, Becker K. Jortzik E, et al. Antioxid Redox Signal. 2012 Aug 15;17(4):657-73. doi: 10.1089/ars.2011.4266. Epub 2012 Jan 16. Antioxid Redox Signal. 2012. PMID: 22085115 Review. - Chemoproteomic profiling of targets of lipid-derived electrophiles by bioorthogonal aminooxy probe.
Chen Y, Cong Y, Quan B, Lan T, Chu X, Ye Z, Hou X, Wang C. Chen Y, et al. Redox Biol. 2017 Aug;12:712-718. doi: 10.1016/j.redox.2017.04.001. Epub 2017 Apr 5. Redox Biol. 2017. PMID: 28411555 Free PMC article.
Cited by
- The roles of S-nitrosylation and S-glutathionylation in Alzheimer's disease.
Dyer RR, Ford KI, Robinson RAS. Dyer RR, et al. Methods Enzymol. 2019;626:499-538. doi: 10.1016/bs.mie.2019.08.004. Methods Enzymol. 2019. PMID: 31606089 Free PMC article. Review. - Proteomes Are of Proteoforms: Embracing the Complexity.
Carbonara K, Andonovski M, Coorssen JR. Carbonara K, et al. Proteomes. 2021 Aug 31;9(3):38. doi: 10.3390/proteomes9030038. Proteomes. 2021. PMID: 34564541 Free PMC article. Review. - Selenenylsulfide covalent-directed chemistry for the detection of sulfhydryl groups using a diselenide fluorescent probe.
Ma C, Xu J, Wang X, Wang X, Zhang L, Jing S. Ma C, et al. RSC Adv. 2024 Nov 18;14(49):36754-36762. doi: 10.1039/d4ra05923a. eCollection 2024 Nov 11. RSC Adv. 2024. PMID: 39559574 Free PMC article. - High-throughput endogenous measurement of S-nitrosylation in Alzheimer's disease using oxidized cysteine-selective cPILOT.
Gu L, Robinson RA. Gu L, et al. Analyst. 2016 Jun 21;141(12):3904-15. doi: 10.1039/c6an00417b. Epub 2016 May 6. Analyst. 2016. PMID: 27152368 Free PMC article. - Global Cysteine-Reactivity Profiling during Impaired Insulin/IGF-1 Signaling in C. elegans Identifies Uncharacterized Mediators of Longevity.
Martell J, Seo Y, Bak DW, Kingsley SF, Tissenbaum HA, Weerapana E. Martell J, et al. Cell Chem Biol. 2016 Aug 18;23(8):955-66. doi: 10.1016/j.chembiol.2016.06.015. Epub 2016 Aug 4. Cell Chem Biol. 2016. PMID: 27499530 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous