Lessons from patient-derived xenografts for better in vitro modeling of human cancer - PubMed (original) (raw)
Review
. 2014 Dec 15:79-80:222-37.
doi: 10.1016/j.addr.2014.09.009. Epub 2014 Oct 13.
Affiliations
- PMID: 25305336
- DOI: 10.1016/j.addr.2014.09.009
Free article
Review
Lessons from patient-derived xenografts for better in vitro modeling of human cancer
Stephen Yiu Chuen Choi et al. Adv Drug Deliv Rev. 2014.
Free article
Abstract
The development of novel cancer therapeutics is often plagued by discrepancies between drug efficacies obtained in preclinical studies and outcomes of clinical trials. The inconsistencies can be attributed to a lack of clinical relevance of the cancer models used for drug testing. While commonly used in vitro culture systems are advantageous for addressing specific experimental questions, they are often gross, fidelity-lacking simplifications that largely ignore the heterogeneity of cancers as well as the complexity of the tumor microenvironment. Factors such as tumor architecture, interactions among cancer cells and between cancer and stromal cells, and an acidic tumor microenvironment are critical characteristics observed in patient-derived cancer xenograft models and in the clinic. By mimicking these crucial in vivo characteristics through use of 3D cultures, co-culture systems and acidic culture conditions, an in vitro cancer model/microenvironment that is more physiologically relevant may be engineered to produce results more readily applicable to the clinic.
Keywords: Acidic culture conditions; Acidic tumor microenvironment; Cancer-associated fibroblasts; Cancer–stromal interactions; Extracellular matrix; Patient-derived xenografts; Regulatory immune cells; Tumor heterogeneity.
Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources