Mathematical models for diffusion-weighted imaging of prostate cancer using b values up to 2000 s/mm(2) : correlation with Gleason score and repeatability of region of interest analysis - PubMed (original) (raw)
. 2015 Oct;74(4):1116-24.
doi: 10.1002/mrm.25482. Epub 2014 Oct 20.
Affiliations
- PMID: 25329932
- DOI: 10.1002/mrm.25482
Free article
Mathematical models for diffusion-weighted imaging of prostate cancer using b values up to 2000 s/mm(2) : correlation with Gleason score and repeatability of region of interest analysis
Jussi Toivonen et al. Magn Reson Med. 2015 Oct.
Free article
Abstract
Purpose: To evaluate four mathematical models for diffusion weighted imaging (DWI) of prostate cancer (PCa) in terms of PCa detection and characterization.
Methods: Fifty patients with histologically confirmed PCa underwent two repeated 3 Tesla DWI examinations using 12 equally distributed b values, the highest b value of 2000 s/mm(2) . Normalized mean signal intensities of regions-of-interest were fitted using monoexponential, kurtosis, stretched exponential, and biexponential models. Tumors were classified into low, intermediate, and high Gleason score groups. Areas under receiver operating characteristic curve (AUCs) were estimated to evaluate performance in PCa detection and Gleason score classifications. The fitted parameters were correlated with Gleason score groups by using the Spearman correlation coefficient (ρ). Coefficient of repeatability and intraclass correlation coefficient [specifically ICC(3,1)], were calculated to evaluate repeatability of the fitted parameters.
Results: The AUC and ρ values were similar between parameters of monoexponential, kurtosis, and stretched exponential (with the exception of the α parameter) models. The absolute ρ values for ADCm , ADCk , K, and ADCs were in the range from 0.31 to 0.53 (P < 0.01). Parameters of the biexponential model demonstrated low repeatability.
Conclusion: In region-of-interest based analysis, the monoexponential model for DWI of PCa using b values up to 2000 s/mm(2) was sufficient for PCa detection and characterization.
Keywords: Gleason score; diffusion-weighted imaging; intraclass correlation coefficient; prostate cancer; repeatability.
© 2014 Wiley Periodicals, Inc.
Similar articles
- Diffusion-weighted imaging of prostate cancer: effect of b-value distribution on repeatability and cancer characterization.
Merisaari H, Toivonen J, Pesola M, Taimen P, Boström PJ, Pahikkala T, Aronen HJ, Jambor I. Merisaari H, et al. Magn Reson Imaging. 2015 Dec;33(10):1212-1218. doi: 10.1016/j.mri.2015.07.004. Epub 2015 Jul 26. Magn Reson Imaging. 2015. PMID: 26220861 - Evaluation of different mathematical models for diffusion-weighted imaging of normal prostate and prostate cancer using high b-values: a repeatability study.
Jambor I, Merisaari H, Taimen P, Boström P, Minn H, Pesola M, Aronen HJ. Jambor I, et al. Magn Reson Med. 2015 May;73(5):1988-98. doi: 10.1002/mrm.25323. Epub 2014 Jul 12. Magn Reson Med. 2015. PMID: 25046482 - Evaluation of Diffusion Kurtosis Imaging Versus Standard Diffusion Imaging for Detection and Grading of Peripheral Zone Prostate Cancer.
Roethke MC, Kuder TA, Kuru TH, Fenchel M, Hadaschik BA, Laun FB, Schlemmer HP, Stieltjes B. Roethke MC, et al. Invest Radiol. 2015 Aug;50(8):483-9. doi: 10.1097/RLI.0000000000000155. Invest Radiol. 2015. PMID: 25867657 - Multiparametric MRI in the Diagnosis of Prostate Cancer: Physical Foundations, Limitations, and Prospective Advances of Diffusion-Weighted MRI.
Wichtmann BD, Zöllner FG, Attenberger UI, Schönberg SO. Wichtmann BD, et al. Rofo. 2021 Apr;193(4):399-409. doi: 10.1055/a-1276-1773. Epub 2020 Dec 10. Rofo. 2021. PMID: 33302312 Review. English.
Cited by
- A Pilot Study on Patient-specific Computational Forecasting of Prostate Cancer Growth during Active Surveillance Using an Imaging-informed Biomechanistic Model.
Lorenzo G, Heiselman JS, Liss MA, Miga MI, Gomez H, Yankeelov TE, Reali A, Hughes TJR. Lorenzo G, et al. Cancer Res Commun. 2024 Mar 1;4(3):617-633. doi: 10.1158/2767-9764.CRC-23-0449. Cancer Res Commun. 2024. PMID: 38426815 Free PMC article. - State-of-the-art Prostate Imaging.
Ayyildiz H, Salmaslioglu A, Tunaci A, Erturk SM. Ayyildiz H, et al. Sisli Etfal Hastan Tip Bul. 2023 Jun 20;57(2):153-162. doi: 10.14744/SEMB.2023.77910. eCollection 2023. Sisli Etfal Hastan Tip Bul. 2023. PMID: 37899806 Free PMC article. Review. - Histogram analysis from stretched exponential model on diffusion-weighted imaging: evaluation of clinically significant prostate cancer.
Kim E, Kim CK, Kim HS, Jang DP, Kim IY, Hwang J. Kim E, et al. Br J Radiol. 2020 Feb 1;93(1106):20190757. doi: 10.1259/bjr.20190757. Epub 2020 Jan 9. Br J Radiol. 2020. PMID: 31899654 Free PMC article. - An annotated test-retest collection of prostate multiparametric MRI.
Fedorov A, Schwier M, Clunie D, Herz C, Pieper S, Kikinis R, Tempany C, Fennessy F. Fedorov A, et al. Sci Data. 2018 Dec 4;5:180281. doi: 10.1038/sdata.2018.281. Sci Data. 2018. PMID: 30512014 Free PMC article. - Validation of IMPROD biparametric MRI in men with clinically suspected prostate cancer: A prospective multi-institutional trial.
Jambor I, Verho J, Ettala O, Knaapila J, Taimen P, Syvänen KT, Kiviniemi A, Kähkönen E, Perez IM, Seppänen M, Rannikko A, Oksanen O, Riikonen J, Vimpeli SM, Kauko T, Merisaari H, Kallajoki M, Mirtti T, Lamminen T, Saunavaara J, Aronen HJ, Boström PJ. Jambor I, et al. PLoS Med. 2019 Jun 3;16(6):e1002813. doi: 10.1371/journal.pmed.1002813. eCollection 2019 Jun. PLoS Med. 2019. PMID: 31158230 Free PMC article. Clinical Trial.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical