Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system - PubMed (original) (raw)
. 2014 Dec;141(24):4827-30.
doi: 10.1242/dev.115584. Epub 2014 Nov 19.
Affiliations
- PMID: 25411213
- PMCID: PMC4299274
- DOI: 10.1242/dev.115584
Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system
Uwe Irion et al. Development. 2014 Dec.
Abstract
The introduction of engineered site-specific DNA endonucleases has brought precise genome editing in many model organisms and human cells into the realm of possibility. In zebrafish, loss-of-function alleles have been successfully produced; however, germ line transmission of functional targeted knock-ins of protein tags or of SNP exchanges have not been reported. Here we show by phenotypic rescue that the CRISPR/Cas system can be used to target and repair a premature stop codon at the albino (alb) locus in zebrafish with high efficiency and precision. Using circular donor DNA containing CRISPR target sites we obtain close to 50% of larvae with precise homology-directed repair of the alb(b4) mutation, a small fraction of which transmitted the repaired allele in the germ line to the next generation (3/28 adult fish). The in vivo demonstration of germ line transmission of a precise SNP exchange in zebrafish underscores its suitability as a model for genetic research.
Keywords: CRISPR/Cas; Genome editing; Zebrafish; albino; slc45a2.
© 2014. Published by The Company of Biologists Ltd.
Figures
Fig. 1.
CRISPR-mediated alb knockout. (A) Schematic representation of the alb locus. The gene consists of seven exons (introns are not drawn to scale). The mutation albb4 introduces a premature stop codon into exon 6. (B) The sequence of exon 6 (in capitals). The CRISPR target site, PAM motif and the albb4 mutation are indicated; the SNPs introduced into the donor DNA fragments are shown beneath the CRISPR target site. (C-F) Dorsal views of larvae at 5 dpf: uninjected control wild type (C) and albb4 (D) larvae, and injected wild-type larvae with moderate (E) and good (F) alb knockout efficiency.
Fig. 2.
Homology-directed repair at the alb locus. (A) Donor DNAs used. The PCR fragments were also cloned into pGEM-T and injected as circular DNA molecules; the construct with the two CRISPR target sites is depicted. (B-D) Dorsal views of larvae 5 dpf: uninjected albb4 control (B), low efficiency repair using linear donor DNA (C) and high efficiency repair using circular donor DNA (D). (E,F) Two examples of adult F0 fish showing pigmented melanophores as a consequence of HDR in melanophore stem cells.
Similar articles
- CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish.
Auer TO, Del Bene F. Auer TO, et al. Methods. 2014 Sep;69(2):142-50. doi: 10.1016/j.ymeth.2014.03.027. Epub 2014 Apr 1. Methods. 2014. PMID: 24704174 - Improving the efficiency for generation of genome-edited zebrafish by labeling primordial germ cells.
Dong Z, Dong X, Jia W, Cao S, Zhao Q. Dong Z, et al. Int J Biochem Cell Biol. 2014 Oct;55:329-34. doi: 10.1016/j.biocel.2014.08.020. Epub 2014 Sep 3. Int J Biochem Cell Biol. 2014. PMID: 25194339 - Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.
Ota S, Hisano Y, Ikawa Y, Kawahara A. Ota S, et al. Genes Cells. 2014 Jul;19(7):555-64. doi: 10.1111/gtc.12154. Epub 2014 May 22. Genes Cells. 2014. PMID: 24848337 - Exogenous gene integration mediated by genome editing technologies in zebrafish.
Morita H, Taimatsu K, Yanagi K, Kawahara A. Morita H, et al. Bioengineered. 2017 May 4;8(3):287-295. doi: 10.1080/21655979.2017.1300727. Epub 2017 Mar 8. Bioengineered. 2017. PMID: 28272984 Free PMC article. Review. - Genome editing using artificial site-specific nucleases in zebrafish.
Hisano Y, Ota S, Kawahara A. Hisano Y, et al. Dev Growth Differ. 2014 Jan;56(1):26-33. doi: 10.1111/dgd.12094. Epub 2013 Oct 14. Dev Growth Differ. 2014. PMID: 24117409 Review.
Cited by
- Cell Synchronization Enhances Nuclear Transformation and Genome Editing via Cas9 Enabling Homologous Recombination in Chlamydomonas reinhardtii.
Angstenberger M, de Signori F, Vecchi V, Dall'Osto L, Bassi R. Angstenberger M, et al. ACS Synth Biol. 2020 Oct 16;9(10):2840-2850. doi: 10.1021/acssynbio.0c00390. Epub 2020 Sep 25. ACS Synth Biol. 2020. PMID: 32916053 Free PMC article. - CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J. Liang P, et al. Protein Cell. 2015 May;6(5):363-372. doi: 10.1007/s13238-015-0153-5. Epub 2015 Apr 18. Protein Cell. 2015. PMID: 25894090 Free PMC article. - Optimal tagging strategies for illuminating expression profiles of genes with different abundance in zebrafish.
Liu J, Li W, Jin X, Lin F, Han J, Zhang Y. Liu J, et al. Commun Biol. 2023 Dec 21;6(1):1300. doi: 10.1038/s42003-023-05686-1. Commun Biol. 2023. PMID: 38129658 Free PMC article. - Neural crest development: insights from the zebrafish.
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Rocha M, et al. Dev Dyn. 2020 Jan;249(1):88-111. doi: 10.1002/dvdy.122. Epub 2019 Oct 22. Dev Dyn. 2020. PMID: 31591788 Free PMC article. Review. - Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis.
de Pater E, Trompouki E. de Pater E, et al. Front Cell Dev Biol. 2018 Oct 15;6:124. doi: 10.3389/fcell.2018.00124. eCollection 2018. Front Cell Dev Biol. 2018. PMID: 30374440 Free PMC article.
References
- Cade L., Reyon D., Hwang W. Y., Tsai S. Q., Patel S., Khayter C., Joung J. K., Sander J. D., Peterson R. T. and Yeh J.-R. J. (2012). Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. 40, 8001-8010 10.1093/nar/gks518 - DOI - PMC - PubMed
- Cermak T., Doyle E. L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J. A., Somia N. V., Bogdanove A. J. and Voytas D. F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 10.1093/nar/gkr218 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous