Posttranslational modification of autophagy-related proteins in macroautophagy - PubMed (original) (raw)
Review
Posttranslational modification of autophagy-related proteins in macroautophagy
Yangchun Xie et al. Autophagy. 2015.
Abstract
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.
Keywords: AMPK, AMP-activated protein kinase; ATG, autophagy-related; MTORC1, mechanistic target of rapamycin complex 1; PE, phosphatidylethanolamine; PTM, posttranslational modification; Ub, ubiquitin; Ubl, ubiquitin like; autophagy; autophagy-related proteins; posttranslational modification.
Figures
Figure 1.
Overview of the autophagy process. Autophagy is a lysosome-mediated degradation and recycling pathway that involves the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes.
Figure 2.
Regulation of Atg/ATG proteins by phosphorylation. In yeast, the initiation of autophagy involves the inhibition of TORC1- and PKA-mediated phosphorylation of Atg1 and Atg13 under starvation conditions. Atg1 is then activated via autophosphorylation, which is responsible for Atg9 localization to the phagophore assembly site. In addition, phosphorylation of Atg29 stimulates autophagy by activating the Atg17-Atg31-Atg29 complex, which is required for subsequent interaction with Atg11. In mammalian cells, phosphorylation of ULK1 and BECN1 by the indicated kinases has dual roles in the regulation of the autophagic response. Phosphorylation of LC3 and ATG5 by PRKAC and MAPK14, respectively, inhibits autophagy. In addition, ULK1- and ATG101-mediated ATG13 phosphorylation promotes selective autophagy.
Figure 3.
Regulation of ATG proteins by ubiquitination. (A) Two Ubl conjugation systems in mammalian cells. (B) Ubiquitination or deubiquitination of BECN1 and ULK1 regulate the autophagic response.
Figure 4.
Regulation of Atg/ATG proteins by acetylation. In yeast, acetylation of Atg3 by Esa1 increases autophagy, whereas deacetylation of Atg3 by Rpd3 decreases autophagy. In mammalian cells, acetylation of ATGs (ATG5, ATG7, ATG8, and ATG12) by EP300 decreases autophagy, whereas deacetylation of these ATGs by SIRT1 increases autophagy. In addition, KAT5-mediated ULK1 acetylation promotes autophagy.
Figure 5.
Regulation of ATG proteins by proteolysis. CAPN/calpain and CASP can inhibit autophagy by degrading or cleaving ATGs such as ATG3, ATG5, ATG16L1, and BECN1. In contrast, CASP-mediated ATG4D cleavage promotes autophagy. In addition, CTSE/cathepsin E and the 20S proteasome are involved in the degradation of the phagophore and autophagosome membrane component LC3-II.
Similar articles
- Chemical Biology of Autophagy-Related Proteins With Posttranslational Modifications: From Chemical Synthesis to Biological Applications.
Luo Y, Jiang C, Yu L, Yang A. Luo Y, et al. Front Chem. 2020 Apr 3;8:233. doi: 10.3389/fchem.2020.00233. eCollection 2020. Front Chem. 2020. PMID: 32309274 Free PMC article. Review. - Assessment of Posttranslational Modifications of ATG proteins.
Xie Y, Kang R, Tang D. Xie Y, et al. Methods Enzymol. 2017;587:171-188. doi: 10.1016/bs.mie.2016.09.057. Epub 2016 Nov 11. Methods Enzymol. 2017. PMID: 28253954 - THANATOS: an integrative data resource of proteins and post-translational modifications in the regulation of autophagy.
Deng W, Ma L, Zhang Y, Zhou J, Wang Y, Liu Z, Xue Y. Deng W, et al. Autophagy. 2018;14(2):296-310. doi: 10.1080/15548627.2017.1402990. Autophagy. 2018. PMID: 29157087 Free PMC article. - New targets for acetylation in autophagy.
Hamaï A, Codogno P. Hamaï A, et al. Sci Signal. 2012 Jul 3;5(231):pe29. doi: 10.1126/scisignal.2003187. Sci Signal. 2012. PMID: 22763338 - Fine-tuning autophagy: from transcriptional to posttranslational regulation.
Botti-Millet J, Nascimbeni AC, Dupont N, Morel E, Codogno P. Botti-Millet J, et al. Am J Physiol Cell Physiol. 2016 Sep 1;311(3):C351-62. doi: 10.1152/ajpcell.00129.2016. Epub 2016 Jun 22. Am J Physiol Cell Physiol. 2016. PMID: 27335173 Review.
Cited by
- Mitophagy in Pancreatic Cancer.
Xie Y, Liu J, Kang R, Tang D. Xie Y, et al. Front Oncol. 2021 Feb 26;11:616079. doi: 10.3389/fonc.2021.616079. eCollection 2021. Front Oncol. 2021. PMID: 33718171 Free PMC article. Review. - MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells.
Wei Q, Pinho S, Dong S, Pierce H, Li H, Nakahara F, Xu J, Xu C, Boulais PE, Zhang D, Maryanovich M, Cuervo AM, Frenette PS. Wei Q, et al. Nat Commun. 2021 May 4;12(1):2522. doi: 10.1038/s41467-021-22749-1. Nat Commun. 2021. PMID: 33947846 Free PMC article. - Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1.
Thirumalaikumar VP, Gorka M, Schulz K, Masclaux-Daubresse C, Sampathkumar A, Skirycz A, Vierstra RD, Balazadeh S. Thirumalaikumar VP, et al. Autophagy. 2021 Sep;17(9):2184-2199. doi: 10.1080/15548627.2020.1820778. Epub 2020 Sep 24. Autophagy. 2021. PMID: 32967551 Free PMC article. - O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity.
Jo YK, Park NY, Park SJ, Kim BG, Shin JH, Jo DS, Bae DJ, Suh YA, Chang JH, Lee EK, Kim SY, Kim JC, Cho DH. Jo YK, et al. Oncotarget. 2016 Aug 30;7(35):57186-57196. doi: 10.18632/oncotarget.11083. Oncotarget. 2016. PMID: 27527864 Free PMC article. - Protein post-translational modifications in the regulation of cancer hallmarks.
Wang H, Yang L, Liu M, Luo J. Wang H, et al. Cancer Gene Ther. 2023 Apr;30(4):529-547. doi: 10.1038/s41417-022-00464-3. Epub 2022 Apr 7. Cancer Gene Ther. 2023. PMID: 35393571 Review.
References
- Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol 2010; 12:814-22; PMID:20811353; http://dx.doi.org/10.1038/ncb0910-814 - DOI - PMC - PubMed
- Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al. . Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8:445-544; PMID:22966490; http://dx.doi.org/10.4161/auto.19496 - DOI - PMC - PubMed
- Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 2010; 140:313-26; PMID:20144757; http://dx.doi.org/10.1016/j.cell.2010.01.028 - DOI - PMC - PubMed
- Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011; 469:323-35; PMID:21248839; http://dx.doi.org/10.1038/nature09782 - DOI - PMC - PubMed
- Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8:741-52; PMID:17717517; http://dx.doi.org/10.1038/nrm2239 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous