Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells - PubMed (original) (raw)
doi: 10.1038/nbt.3102. Epub 2015 Jan 19.
Affiliations
- PMID: 25599176
- DOI: 10.1038/nbt.3102
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
Florian Buettner et al. Nat Biotechnol. 2015 Feb.
Abstract
Recent technical developments have enabled the transcriptomes of hundreds of cells to be assayed in an unbiased manner, opening up the possibility that new subpopulations of cells can be found. However, the effects of potential confounding factors, such as the cell cycle, on the heterogeneity of gene expression and therefore on the ability to robustly identify subpopulations remain unclear. We present and validate a computational approach that uses latent variable models to account for such hidden factors. We show that our single-cell latent variable model (scLVM) allows the identification of otherwise undetectable subpopulations of cells that correspond to different stages during the differentiation of naive T cells into T helper 2 cells. Our approach can be used not only to identify cellular subpopulations but also to tease apart different sources of gene expression heterogeneity in single-cell transcriptomes.
Comment in
- Kindred cells among the crowd.
Nawy T. Nawy T. Nat Methods. 2015 Mar;12(3):170-1. doi: 10.1038/nmeth.3307. Nat Methods. 2015. PMID: 25879100 No abstract available. - The contribution of cell cycle to heterogeneity in single-cell RNA-seq data.
McDavid A, Finak G, Gottardo R. McDavid A, et al. Nat Biotechnol. 2016 Jun 9;34(6):591-3. doi: 10.1038/nbt.3498. Nat Biotechnol. 2016. PMID: 27281413 Free PMC article. No abstract available. - Reply to The contribution of cell cycle to heterogeneity in single-cell RNA-seq data.
[No authors listed] [No authors listed] Nat Biotechnol. 2016 May 6;34(6):593-5. doi: 10.1038/nbt.3607. Nat Biotechnol. 2016. PMID: 27281414 No abstract available.
Similar articles
- f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq.
Buettner F, Pratanwanich N, McCarthy DJ, Marioni JC, Stegle O. Buettner F, et al. Genome Biol. 2017 Nov 7;18(1):212. doi: 10.1186/s13059-017-1334-8. Genome Biol. 2017. PMID: 29115968 Free PMC article. - Constructing cell lineages from single-cell transcriptomes.
Chen J, Rénia L, Ginhoux F. Chen J, et al. Mol Aspects Med. 2018 Feb;59:95-113. doi: 10.1016/j.mam.2017.10.004. Epub 2017 Nov 26. Mol Aspects Med. 2018. PMID: 29107741 Review. - Single-cell messenger RNA sequencing reveals rare intestinal cell types.
Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A. Grün D, et al. Nature. 2015 Sep 10;525(7568):251-5. doi: 10.1038/nature14966. Epub 2015 Aug 19. Nature. 2015. PMID: 26287467 - Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation.
Nair G, Abranches E, Guedes AM, Henrique D, Raj A. Nair G, et al. Sci Rep. 2015 Aug 21;5:13339. doi: 10.1038/srep13339. Sci Rep. 2015. PMID: 26292941 Free PMC article. - Cellular diversity and lineage trajectory: insights from mouse single cell transcriptomes.
Tam PPL, Ho JWK. Tam PPL, et al. Development. 2020 Jan 24;147(2):dev179788. doi: 10.1242/dev.179788. Development. 2020. PMID: 31980483 Review.
Cited by
- Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.
Engel KL, Mackiewicz M, Hardigan AA, Myers RM, Savic D. Engel KL, et al. Semin Cell Dev Biol. 2016 Sep;57:40-50. doi: 10.1016/j.semcdb.2016.05.014. Epub 2016 May 22. Semin Cell Dev Biol. 2016. PMID: 27224938 Free PMC article. Review. - Singling out blood development.
Fast EM, Zon LI. Fast EM, et al. Nat Biotechnol. 2015 Mar;33(3):260-1. doi: 10.1038/nbt.3168. Nat Biotechnol. 2015. PMID: 25748916 Free PMC article. - In Situ Maturation and Tissue Adaptation of Type 2 Innate Lymphoid Cell Progenitors.
Zeis P, Lian M, Fan X, Herman JS, Hernandez DC, Gentek R, Elias S, Symowski C, Knöpper K, Peltokangas N, Friedrich C, Doucet-Ladeveze R, Kabat AM, Locksley RM, Voehringer D, Bajenoff M, Rudensky AY, Romagnani C, Grün D, Gasteiger G. Zeis P, et al. Immunity. 2020 Oct 13;53(4):775-792.e9. doi: 10.1016/j.immuni.2020.09.002. Epub 2020 Sep 30. Immunity. 2020. PMID: 33002412 Free PMC article. - Resolving early mesoderm diversification through single-cell expression profiling.
Scialdone A, Tanaka Y, Jawaid W, Moignard V, Wilson NK, Macaulay IC, Marioni JC, Göttgens B. Scialdone A, et al. Nature. 2016 Jul 14;535(7611):289-293. doi: 10.1038/nature18633. Epub 2016 Jul 6. Nature. 2016. PMID: 27383781 Free PMC article. - Differential Phasing between Circadian Clocks in the Brain and Peripheral Organs in Humans.
Hughey JJ, Butte AJ. Hughey JJ, et al. J Biol Rhythms. 2016 Dec;31(6):588-597. doi: 10.1177/0748730416668049. Epub 2016 Oct 4. J Biol Rhythms. 2016. PMID: 27702781 Free PMC article.
References
- Stem Cell Reports. 2013 Dec 05;1(6):532-44 - PubMed
- Nat Rev Genet. 2015 Mar;16(3):133-45 - PubMed
- Anal Chem. 2003 Sep 15;75(18):4718-23 - PubMed
- Anal Chem. 2003 Jul 15;75(14):3581-6 - PubMed
- Cell Stem Cell. 2010 May 7;6(5):468-78 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases