Accurate measurement of circulating mitochondrial DNA content from human blood samples using real-time quantitative PCR - PubMed (original) (raw)
Accurate measurement of circulating mitochondrial DNA content from human blood samples using real-time quantitative PCR
Saima Ajaz et al. Methods Mol Biol. 2015.
Abstract
We describe a protocol to accurately measure the amount of human mitochondrial DNA (MtDNA) in peripheral blood samples which can be modified to quantify MtDNA from other body fluids, human cells, and tissues. This protocol is based on the use of real-time quantitative PCR (qPCR) to quantify the amount of MtDNA relative to nuclear DNA (designated the Mt/N ratio). In the last decade, there have been increasing numbers of studies describing altered MtDNA or Mt/N in circulation in common nongenetic diseases where mitochondrial dysfunction may play a role (for review see Malik and Czajka, Mitochondrion 13:481-492, 2013). These studies are distinct from those looking at genetic mitochondrial disease and are attempting to identify acquired changes in circulating MtDNA content as an indicator of mitochondrial function. However, the methodology being used is not always specific and reproducible. As more than 95 % of the human mitochondrial genome is duplicated in the human nuclear genome, it is important to avoid co-amplification of nuclear pseudogenes. Furthermore, template preparation protocols can also affect the results because of the size and structural differences between the mitochondrial and nuclear genomes. Here we describe how to (1) prepare DNA from blood samples; (2) pretreat the DNA to prevent dilution bias; (3) prepare dilution standards for absolute quantification using the unique primers human mitochondrial genome forward primer (hMitoF3) and human mitochondrial genome reverse primer(hMitoR3) for the mitochondrial genome, and human nuclear genome forward primer (hB2MF1) and human nuclear genome reverse primer (hB2MR1) primers for the human nuclear genome; (4) carry out qPCR for either relative or absolute quantification from test samples; (5) analyze qPCR data; and (6) calculate the sample size to adequately power studies. The protocol presented here is suitable for high-throughput use.
Similar articles
- Accurate Measurement of Cellular and Cell-Free Circulating Mitochondrial DNA Content from Human Blood Samples Using Real-Time Quantitative PCR.
Rosa H, Malik AN. Rosa H, et al. Methods Mol Biol. 2021;2277:247-268. doi: 10.1007/978-1-0716-1270-5_15. Methods Mol Biol. 2021. PMID: 34080155 - Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias.
Malik AN, Shahni R, Rodriguez-de-Ledesma A, Laftah A, Cunningham P. Malik AN, et al. Biochem Biophys Res Commun. 2011 Aug 19;412(1):1-7. doi: 10.1016/j.bbrc.2011.06.067. Epub 2011 Jun 15. Biochem Biophys Res Commun. 2011. PMID: 21703239 - Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction?
Malik AN, Czajka A. Malik AN, et al. Mitochondrion. 2013 Sep;13(5):481-92. doi: 10.1016/j.mito.2012.10.011. Epub 2012 Oct 22. Mitochondrion. 2013. PMID: 23085537 Review. - Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences.
Malik AN, Czajka A, Cunningham P. Malik AN, et al. Mitochondrion. 2016 Jul;29:59-64. doi: 10.1016/j.mito.2016.05.003. Epub 2016 May 12. Mitochondrion. 2016. PMID: 27181048 - [Quantitative PCR in the diagnosis of Leishmania].
Mortarino M, Franceschi A, Mancianti F, Bazzocchi C, Genchi C, Bandi C. Mortarino M, et al. Parassitologia. 2004 Jun;46(1-2):163-7. Parassitologia. 2004. PMID: 15305709 Review. Italian.
Cited by
- Mitochondrial Abundance and Function Differ Across Muscle Within Species.
Yen CN, Bodmer JS, Wicks JC, Zumbaugh MD, Persia ME, Shi TH, Gerrard DE. Yen CN, et al. Metabolites. 2024 Oct 16;14(10):553. doi: 10.3390/metabo14100553. Metabolites. 2024. PMID: 39452934 Free PMC article. - Role of Spexin in White Adipose Tissue Thermogenesis under Basal and Cold-Stimulated Conditions.
Gambaro SE, Zubiría MG, Giordano AP, Castro PF, Garraza C, Harnichar AE, Alzamendi A, Spinedi E, Giovambattista A. Gambaro SE, et al. Int J Mol Sci. 2024 Feb 1;25(3):1767. doi: 10.3390/ijms25031767. Int J Mol Sci. 2024. PMID: 38339044 Free PMC article. - Human Genetic Variation at rs10071329 Correlates With Adiposity-Related Traits, Modulates PPARGC1B Expression, and Alters Brown Adipocyte Function.
Huang M, Prasad RB, Coral DE, Hjort L, Minja DTR, Mulder H, Franks PW, Kalamajski S. Huang M, et al. Diabetes. 2024 Apr 1;73(4):637-645. doi: 10.2337/db23-0531. Diabetes. 2024. PMID: 38190589 Free PMC article. - Mitochondrial DNA - novel mechanisms of kidney damage and potential biomarker.
Malik AN. Malik AN. Curr Opin Nephrol Hypertens. 2023 Nov 1;32(6):528-536. doi: 10.1097/MNH.0000000000000922. Epub 2023 Sep 1. Curr Opin Nephrol Hypertens. 2023. PMID: 37661939 Free PMC article. Review. - The Relationship between All-Cause Natural Mortality and Copy Number of Mitochondrial DNA in a 15-Year Follow-Up Study.
Malyutina S, Maximov V, Chervova O, Orlov P, Ivanova A, Mazdorova E, Ryabikov A, Simonova G, Voevoda M. Malyutina S, et al. Int J Mol Sci. 2023 Jun 21;24(13):10469. doi: 10.3390/ijms241310469. Int J Mol Sci. 2023. PMID: 37445647 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials