Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties - PubMed (original) (raw)
doi: 10.1016/j.nano.2015.01.003. Epub 2015 Feb 4.
Yi Lee 2, Pieter Vader 2, Imre Mäger 3, Henrik J Johansson 4, Wolf Heusermann 5, Oscar P B Wiklander 1, Mattias Hällbrink 6, Yiqi Seow 7, Jarred J Bultema 8, Jonathan Gilthorpe 9, Tim Davies 10, Paul J Fairchild 10, Susanne Gabrielsson 8, Nicole C Meisner-Kober 5, Janne Lehtiö 4, C I Edvard Smith 1, Matthew J A Wood 11, Samir El Andaloussi 12
Affiliations
- PMID: 25659648
- DOI: 10.1016/j.nano.2015.01.003
Free article
Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties
Joel Z Nordin et al. Nanomedicine. 2015 May.
Free article
Abstract
Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest; serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield and high-purity EVs from various biological fluids. Here, we describe a systematic comparison between two protocols for EV purification: ultrafiltration with subsequent liquid chromatography (UF-LC) and differential ultracentrifugation (UC). A significantly higher EV yield resulted from UF-LC as compared to UC, without affecting vesicle protein composition. Importantly, we provide novel evidence that, in contrast to UC-purified EVs, the biophysical properties of UF-LC-purified EVs are preserved, leading to a different in vivo biodistribution, with less accumulation in lungs. Finally, we show that UF-LC is scalable and adaptable for EV isolation from complex media types such as stem cell media, which is of huge significance for future clinical applications involving EVs.
From the clinical editor: Recent evidence suggests extracellular vesicles (EVs) as another route of cellular communication. These EVs may be utilized for future therapeutics. In this article, the authors compared ultrafiltration with size-exclusion liquid chromatography (UF-LC) and ultra-centrifugation (UC) for EV recovery.
Keywords: Biophysical properties; extracellular vesicles; size-exclusion liquid chromatography; ultracentrifugation; ultrafiltration.
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Similar articles
- Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies.
Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. Benedikter BJ, et al. Sci Rep. 2017 Nov 10;7(1):15297. doi: 10.1038/s41598-017-15717-7. Sci Rep. 2017. PMID: 29127410 Free PMC article. - Assessment of extracellular vesicle isolation methods from human stool supernatant.
Northrop-Albrecht EJ, Taylor WR, Huang BQ, Kisiel JB, Lucien F. Northrop-Albrecht EJ, et al. J Extracell Vesicles. 2022 Apr;11(4):e12208. doi: 10.1002/jev2.12208. J Extracell Vesicles. 2022. PMID: 35383410 Free PMC article. - Enrichment protocols for human conjunctival extracellular vesicles and their characterization.
Romero-Castillo I, López-García A, Diebold Y, García-Posadas L. Romero-Castillo I, et al. Sci Rep. 2024 Nov 16;14(1):28270. doi: 10.1038/s41598-024-79481-1. Sci Rep. 2024. PMID: 39550477 Free PMC article. - Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography.
Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, Roura S, Borràs FE. Monguió-Tortajada M, et al. Cell Mol Life Sci. 2019 Jun;76(12):2369-2382. doi: 10.1007/s00018-019-03071-y. Epub 2019 Mar 19. Cell Mol Life Sci. 2019. PMID: 30891621 Free PMC article. Review. - Chromatography and its hyphenation to mass spectrometry for extracellular vesicle analysis.
Pocsfalvi G, Stanly C, Fiume I, Vékey K. Pocsfalvi G, et al. J Chromatogr A. 2016 Mar 25;1439:26-41. doi: 10.1016/j.chroma.2016.01.017. Epub 2016 Jan 11. J Chromatogr A. 2016. PMID: 26830636 Review.
Cited by
- A Carrier Phase Ultrafiltration and Backflow Recovery Technique for Purification of Biological Macromolecules.
Ghosh R. Ghosh R. Membranes (Basel). 2024 Aug 30;14(9):188. doi: 10.3390/membranes14090188. Membranes (Basel). 2024. PMID: 39330529 Free PMC article. - Basic Guide for Approaching Drug Delivery with Extracellular Vesicles.
Brezgin S, Danilik O, Yudaeva A, Kachanov A, Kostyusheva A, Karandashov I, Ponomareva N, Zamyatnin AA Jr, Parodi A, Chulanov V, Kostyushev D. Brezgin S, et al. Int J Mol Sci. 2024 Sep 27;25(19):10401. doi: 10.3390/ijms251910401. Int J Mol Sci. 2024. PMID: 39408730 Free PMC article. Review. - Stem Cell Extracellular Vesicles: Extended Messages of Regeneration.
Riazifar M, Pone EJ, Lötvall J, Zhao W. Riazifar M, et al. Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:125-154. doi: 10.1146/annurev-pharmtox-061616-030146. Epub 2016 Oct 28. Annu Rev Pharmacol Toxicol. 2017. PMID: 27814025 Free PMC article. Review. - Small but Mighty-Exosomes, Novel Intercellular Messengers in Neurodegeneration.
Kumari M, Anji A. Kumari M, et al. Biology (Basel). 2022 Mar 8;11(3):413. doi: 10.3390/biology11030413. Biology (Basel). 2022. PMID: 35336787 Free PMC article. Review. - Very Long-Chain C24:1 Ceramide Is Increased in Serum Extracellular Vesicles with Aging and Can Induce Senescence in Bone-Derived Mesenchymal Stem Cells.
Khayrullin A, Krishnan P, Martinez-Nater L, Mendhe B, Fulzele S, Liu Y, Mattison JA, Hamrick MW. Khayrullin A, et al. Cells. 2019 Jan 10;8(1):37. doi: 10.3390/cells8010037. Cells. 2019. PMID: 30634626 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources