Driving pressure and survival in the acute respiratory distress syndrome - PubMed (original) (raw)
Observational Study
. 2015 Feb 19;372(8):747-55.
doi: 10.1056/NEJMsa1410639.
Maureen O Meade, Arthur S Slutsky, Laurent Brochard, Eduardo L V Costa, David A Schoenfeld, Thomas E Stewart, Matthias Briel, Daniel Talmor, Alain Mercat, Jean-Christophe M Richard, Carlos R R Carvalho, Roy G Brower
Affiliations
- PMID: 25693014
- DOI: 10.1056/NEJMsa1410639
Free article
Observational Study
Driving pressure and survival in the acute respiratory distress syndrome
Marcelo B P Amato et al. N Engl J Med. 2015.
Free article
Abstract
Background: Mechanical-ventilation strategies that use lower end-inspiratory (plateau) airway pressures, lower tidal volumes (VT), and higher positive end-expiratory pressures (PEEPs) can improve survival in patients with the acute respiratory distress syndrome (ARDS), but the relative importance of each of these components is uncertain. Because respiratory-system compliance (CRS) is strongly related to the volume of aerated remaining functional lung during disease (termed functional lung size), we hypothesized that driving pressure (ΔP=VT/CRS), in which VT is intrinsically normalized to functional lung size (instead of predicted lung size in healthy persons), would be an index more strongly associated with survival than VT or PEEP in patients who are not actively breathing.
Methods: Using a statistical tool known as multilevel mediation analysis to analyze individual data from 3562 patients with ARDS enrolled in nine previously reported randomized trials, we examined ΔP as an independent variable associated with survival. In the mediation analysis, we estimated the isolated effects of changes in ΔP resulting from randomized ventilator settings while minimizing confounding due to the baseline severity of lung disease.
Results: Among ventilation variables, ΔP was most strongly associated with survival. A 1-SD increment in ΔP (approximately 7 cm of water) was associated with increased mortality (relative risk, 1.41; 95% confidence interval [CI], 1.31 to 1.51; P<0.001), even in patients receiving "protective" plateau pressures and VT (relative risk, 1.36; 95% CI, 1.17 to 1.58; P<0.001). Individual changes in VT or PEEP after randomization were not independently associated with survival; they were associated only if they were among the changes that led to reductions in ΔP (mediation effects of ΔP, P=0.004 and P=0.001, respectively).
Conclusions: We found that ΔP was the ventilation variable that best stratified risk. Decreases in ΔP owing to changes in ventilator settings were strongly associated with increased survival. (Funded by Fundação de Amparo e Pesquisa do Estado de São Paulo and others.).
Comment in
- Driving pressure and respiratory mechanics in ARDS.
Loring SH, Malhotra A. Loring SH, et al. N Engl J Med. 2015 Feb 19;372(8):776-7. doi: 10.1056/NEJMe1414218. N Engl J Med. 2015. PMID: 25693019 Free PMC article. No abstract available. - Driving pressure as a key ventilation variable.
Costa EL, Slutsky AS, Amato MB. Costa EL, et al. N Engl J Med. 2015 May 21;372(21):2072. doi: 10.1056/NEJMc1503487. N Engl J Med. 2015. PMID: 25992757 No abstract available. - Driving pressure as a key ventilation variable.
Jamaati H, Mohajerani SA, Hashemian SM. Jamaati H, et al. N Engl J Med. 2015 May 21;372(21):2071. doi: 10.1056/NEJMc1503487. N Engl J Med. 2015. PMID: 25992758 No abstract available. - Driving pressure as a key ventilation variable.
Morales-Nebreda L, Jain M, Corbridge TC. Morales-Nebreda L, et al. N Engl J Med. 2015 May 21;372(21):2071. doi: 10.1056/NEJMc1503487. N Engl J Med. 2015. PMID: 25992759 No abstract available. - Driving pressure as a key ventilation variable.
Dhooria S, Sehgal IS, Agarwal R. Dhooria S, et al. N Engl J Med. 2015 May 21;372(21):2072. doi: 10.1056/NEJMc1503487. N Engl J Med. 2015. PMID: 25992760 No abstract available. - [Comment on: Importance of driving pressure for survival of controlled mechanically ventilated ARDS patients].
Neumann P. Neumann P. Anaesthesist. 2016 Jun;65(6):467-8. doi: 10.1007/s00101-016-0186-z. Anaesthesist. 2016. PMID: 27273201 German. No abstract available.
Similar articles
- Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials.
Guérin C, Papazian L, Reignier J, Ayzac L, Loundou A, Forel JM; investigators of the Acurasys and Proseva trials. Guérin C, et al. Crit Care. 2016 Nov 29;20(1):384. doi: 10.1186/s13054-016-1556-2. Crit Care. 2016. PMID: 27894328 Free PMC article. Clinical Trial. - Biological Impact of Transpulmonary Driving Pressure in Experimental Acute Respiratory Distress Syndrome.
Samary CS, Santos RS, Santos CL, Felix NS, Bentes M, Barboza T, Capelozzi VL, Morales MM, Garcia CS, Souza SA, Marini JJ, Gama de Abreu M, Silva PL, Pelosi P, Rocco PR. Samary CS, et al. Anesthesiology. 2015 Aug;123(2):423-33. doi: 10.1097/ALN.0000000000000716. Anesthesiology. 2015. PMID: 26039328 - Driving Pressure Is Associated with Outcome during Assisted Ventilation in Acute Respiratory Distress Syndrome.
Bellani G, Grassi A, Sosio S, Gatti S, Kavanagh BP, Pesenti A, Foti G. Bellani G, et al. Anesthesiology. 2019 Sep;131(3):594-604. doi: 10.1097/ALN.0000000000002846. Anesthesiology. 2019. PMID: 31335543 - Should we use driving pressure to set tidal volume?
Grieco DL, Chen L, Dres M, Brochard L. Grieco DL, et al. Curr Opin Crit Care. 2017 Feb;23(1):38-44. doi: 10.1097/MCC.0000000000000377. Curr Opin Crit Care. 2017. PMID: 27875410 Review. - Low Tidal Volume versus Non-Volume-Limited Strategies for Patients with Acute Respiratory Distress Syndrome. A Systematic Review and Meta-Analysis.
Walkey AJ, Goligher EC, Del Sorbo L, Hodgson CL, Adhikari NKJ, Wunsch H, Meade MO, Uleryk E, Hess D, Talmor DS, Thompson BT, Brower RG, Fan E. Walkey AJ, et al. Ann Am Thorac Soc. 2017 Oct;14(Supplement_4):S271-S279. doi: 10.1513/AnnalsATS.201704-337OT. Ann Am Thorac Soc. 2017. PMID: 28846440 Review.
Cited by
- Esophageal pressure as estimation of pleural pressure: a study in a model of eviscerated chest.
Florio G, Carlesso E, Mojoli F, Madotto F, Vivona L, Minaudo C, Battistin M, Colombo SM, Gatti S, Sosio S, Pesenti A, Grasselli G, Zanella A. Florio G, et al. BMC Anesthesiol. 2024 Nov 14;24(1):415. doi: 10.1186/s12871-024-02806-0. BMC Anesthesiol. 2024. PMID: 39543495 Free PMC article. - A randomized control trial evaluating the advice of a physiological-model/digital twin-based decision support system on mechanical ventilation in patients with acute respiratory distress syndrome.
Patel BV, Mumby S, Johnson N, Handslip R, Patel S, Lee T, Andersen MS, Falaschetti E, Adcock IM, McAuley DF, Takata M, Staudinger T, Karbing DS, Jabaudon M, Schellongowski P, Rees SE; DeVENT Study Group. Patel BV, et al. Front Med (Lausanne). 2024 Oct 30;11:1473629. doi: 10.3389/fmed.2024.1473629. eCollection 2024. Front Med (Lausanne). 2024. PMID: 39540041 Free PMC article. - Precision Medicine in Acute Respiratory Distress Syndrome: Progress, Challenges, and the Road ahead.
Leonard J, Sinha P. Leonard J, et al. Clin Chest Med. 2024 Dec;45(4):835-848. doi: 10.1016/j.ccm.2024.08.005. Epub 2024 Sep 20. Clin Chest Med. 2024. PMID: 39443001 Review. - A bibliometric analysis of respiratory mechanics research related to acute respiratory distress syndrome from 1985 to 2023.
Zhou YM, Tian X, Wang YM, Wang S, Yang YL, Zhou JX, Zhang L. Zhou YM, et al. Front Med (Lausanne). 2024 Sep 20;11:1420875. doi: 10.3389/fmed.2024.1420875. eCollection 2024. Front Med (Lausanne). 2024. PMID: 39371338 Free PMC article. - Comparing the impact of targeting limited driving pressure to low tidal volume ventilation on mortality in mechanically ventilated adults with COVID-19 ARDS: an exploratory target trial emulation.
Tanios M, Wu TT, Nguyen HM, Smith L, Mahidhara R, Devlin JW. Tanios M, et al. BMJ Open Respir Res. 2024 Oct 1;11(1):e002439. doi: 10.1136/bmjresp-2024-002439. BMJ Open Respir Res. 2024. PMID: 39353713 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources