Microglia and neuroprotection - PubMed (original) (raw)
Review
. 2016 Jan:136 Suppl 1:10-7.
doi: 10.1111/jnc.13062. Epub 2015 Mar 10.
Affiliations
- PMID: 25693054
- DOI: 10.1111/jnc.13062
Free article
Review
Microglia and neuroprotection
Zhihong Chen et al. J Neurochem. 2016 Jan.
Free article
Abstract
Microglia were first identified over a century ago, but our knowledge about their ontogeny and functions has significantly expanded only recently. Microglia colonize the central nervous system (CNS) in utero and play essential roles in brain development. Once neural development is completed, microglia function as the resident innate immune cells of the CNS by surveying their microenvironment and becoming activated when the CNS is challenged by infection, injury, or disease. Despite the traditional view of microglia as being destructive in neurological diseases, recent studies have shown that microglia maintain CNS homeostasis and protect the CNS under various pathological conditions. Microglia can be prophylactically activated by modeling infection with systemic lipopolysaccharide injections and these activated microglia can protect the brain from traumatic injury through modulation of neuronal synapses. Microglia can also protect the CNS by promoting neurogenesis, clearing debris, and suppressing inflammation in diseases such as stroke, autism, and Alzheimer's. Microglia are the resident innate immune cells of the CNS. Despite the traditional view of microglia as being destructive in neurological diseases, recent studies have shown that they maintain tissue homeostasis and protect the CNS under various pathological conditions. They achieve so by clearing debris, promoting neurogenesis, suppressing inflammation and stripping inhibitory synapses. This review summarizes recent advances of our understanding on the multi-dimensional neuroprotective roles of microglia.
Keywords: M2-like; microglia; neuroprotection; phagocytosis; synaptic stripping.
© 2015 International Society for Neurochemistry.
Similar articles
- Neuronal injury in chronic CNS inflammation.
Zindler E, Zipp F. Zindler E, et al. Best Pract Res Clin Anaesthesiol. 2010 Dec;24(4):551-62. doi: 10.1016/j.bpa.2010.11.001. Epub 2010 Nov 29. Best Pract Res Clin Anaesthesiol. 2010. PMID: 21619866 Review. - Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target.
Du L, Zhang Y, Chen Y, Zhu J, Yang Y, Zhang HL. Du L, et al. Mol Neurobiol. 2017 Dec;54(10):7567-7584. doi: 10.1007/s12035-016-0245-0. Epub 2016 Nov 9. Mol Neurobiol. 2017. PMID: 27830532 Review. - Molecular Mechanism of the Protective Effects of M2 Microglia on Neurons: A Review Focused on Exosomes and Secretory Proteins.
Chai M, Su G, Gao J, Chen W, Wu Q, Dong Y, Wang H, Chen D, Li Y, Gao X, Li R, Ma T, Zhang Z. Chai M, et al. Neurochem Res. 2022 Dec;47(12):3556-3564. doi: 10.1007/s11064-022-03760-4. Epub 2022 Oct 12. Neurochem Res. 2022. PMID: 36222957 Review. - Exploring the role of microglia in cortical spreading depression in neurological disease.
Shibata M, Suzuki N. Shibata M, et al. J Cereb Blood Flow Metab. 2017 Apr;37(4):1182-1191. doi: 10.1177/0271678X17690537. Epub 2017 Jan 1. J Cereb Blood Flow Metab. 2017. PMID: 28155572 Free PMC article. Review. - Communicating systems in the body: how microbiota and microglia cooperate.
Erny D, Hrabě de Angelis AL, Prinz M. Erny D, et al. Immunology. 2017 Jan;150(1):7-15. doi: 10.1111/imm.12645. Epub 2016 Aug 24. Immunology. 2017. PMID: 27392533 Free PMC article. Review.
Cited by
- Low-Dose Ionizing Radiation Modulates Microglia Phenotypes in the Models of Alzheimer's Disease.
Kim S, Chung H, Ngoc Mai H, Nam Y, Shin SJ, Park YH, Chung MJ, Lee JK, Rhee HY, Jahng GH, Kim Y, Lim YJ, Kong M, Moon M, Chung WK. Kim S, et al. Int J Mol Sci. 2020 Jun 25;21(12):4532. doi: 10.3390/ijms21124532. Int J Mol Sci. 2020. PMID: 32630597 Free PMC article. - An update on potential links between type 2 diabetes mellitus and Alzheimer's disease.
De Sousa RAL, Harmer AR, Freitas DA, Mendonça VA, Lacerda ACR, Leite HR. De Sousa RAL, et al. Mol Biol Rep. 2020 Aug;47(8):6347-6356. doi: 10.1007/s11033-020-05693-z. Epub 2020 Aug 1. Mol Biol Rep. 2020. PMID: 32740795 Review. - Long Non-coding RNA TUG1 Sponges Mir-145a-5p to Regulate Microglial Polarization After Oxygen-Glucose Deprivation.
Wang H, Liao S, Li H, Chen Y, Yu J. Wang H, et al. Front Mol Neurosci. 2019 Sep 10;12:215. doi: 10.3389/fnmol.2019.00215. eCollection 2019. Front Mol Neurosci. 2019. PMID: 31551710 Free PMC article. - Effects of estrogen receptor GPR30 agonist G1 on neuronal apoptosis and microglia polarization in traumatic brain injury rats.
Pan MX, Tang JC, Liu R, Feng YG, Wan Q. Pan MX, et al. Chin J Traumatol. 2018 Aug;21(4):224-228. doi: 10.1016/j.cjtee.2018.04.003. Epub 2018 May 18. Chin J Traumatol. 2018. PMID: 30017543 Free PMC article. - LPS-Activated Microglial Cell-Derived Conditioned Medium Protects HT22 Neuronal Cells against Glutamate-Induced Ferroptosis.
Jacques MT, Saso L, Farina M. Jacques MT, et al. Int J Mol Sci. 2023 Feb 2;24(3):2910. doi: 10.3390/ijms24032910. Int J Mol Sci. 2023. PMID: 36769233 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical