Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy - PubMed (original) (raw)
. 2015 Apr 8;15(4):2732-9.
doi: 10.1021/acs.nanolett.5b00570. Epub 2015 Mar 30.
Affiliations
- PMID: 25806599
- DOI: 10.1021/acs.nanolett.5b00570
Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy
Qinglian Hu et al. Nano Lett. 2015.
Abstract
Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.
Keywords: Salmonella; acid tolerance; cationic polymer; hybrid living material; phagosomal escape; vaccine delivery.
Similar articles
- Orally administered DNA vaccine delivery by attenuated Salmonella typhimurium targeting fetal liver kinase 1 inhibits murine Lewis lung carcinoma growth and metastasis.
Zuo SG, Chen Y, Wu ZP, Liu X, Liu C, Zhou YC, Wu CL, Jin CG, Gu YL, Li J, Chen XQ, Li Y, Wei HP, Li LH, Wang XC. Zuo SG, et al. Biol Pharm Bull. 2010;33(2):174-82. doi: 10.1248/bpb.33.174. Biol Pharm Bull. 2010. PMID: 20118536 - In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models.
Almeida JPM, Lin AY, Figueroa ER, Foster AE, Drezek RA. Almeida JPM, et al. Small. 2015 Mar 25;11(12):1453-1459. doi: 10.1002/smll.201402179. Epub 2014 Oct 29. Small. 2015. PMID: 25354691 Free PMC article. - Oral DNA vaccines target the tumor vasculature and microenvironment and suppress tumor growth and metastasis.
Xiang R, Luo Y, Niethammer AG, Reisfeld RA. Xiang R, et al. Immunol Rev. 2008 Apr;222:117-28. doi: 10.1111/j.1600-065X.2008.00613.x. Immunol Rev. 2008. PMID: 18363997 Review. - Live-attenuated bacteria as a cancer vaccine vector.
Toussaint B, Chauchet X, Wang Y, Polack B, Le Gouëllec A. Toussaint B, et al. Expert Rev Vaccines. 2013 Oct;12(10):1139-54. doi: 10.1586/14760584.2013.836914. Expert Rev Vaccines. 2013. PMID: 24124876 Review. - Live attenuated bacteria as vectors to deliver plasmid DNA vaccines.
Dietrich G, Spreng S, Favre D, Viret JF, Guzman CA. Dietrich G, et al. Curr Opin Mol Ther. 2003 Feb;5(1):10-9. Curr Opin Mol Ther. 2003. PMID: 12669465 Review.
Cited by
- Convergence of Nanotechnology and Bacteriotherapy for Biomedical Applications.
Liu J, Yuan S, Bremmer A, Hu Q. Liu J, et al. Adv Sci (Weinh). 2024 Apr;11(16):e2309295. doi: 10.1002/advs.202309295. Epub 2024 Feb 15. Adv Sci (Weinh). 2024. PMID: 38358998 Free PMC article. Review. - Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium.
Corb Aron RA, Abid A, Vesa CM, Nechifor AC, Behl T, Ghitea TC, Munteanu MA, Fratila O, Andronie-Cioara FL, Toma MM, Bungau S. Corb Aron RA, et al. Microorganisms. 2021 Mar 17;9(3):618. doi: 10.3390/microorganisms9030618. Microorganisms. 2021. PMID: 33802777 Free PMC article. Review. - Preparation of Poly(MTZ) n -(DMAEMA) m Micelles and Study on Their Antibacterial Property.
Zhang L, Zhang Y, Zhao G, Yang H, Wang X, Yu R, Liu H, Li S. Zhang L, et al. ACS Omega. 2020 Sep 1;5(36):23053-23061. doi: 10.1021/acsomega.0c02774. eCollection 2020 Sep 15. ACS Omega. 2020. PMID: 32954155 Free PMC article. - Recent advances in bacteria-mediated cancer therapy.
Liang S, Wang C, Shao Y, Wang Y, Xing D, Geng Z. Liang S, et al. Front Bioeng Biotechnol. 2022 Oct 12;10:1026248. doi: 10.3389/fbioe.2022.1026248. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36312554 Free PMC article. Review. - Plasmid DNA for Therapeutic Applications in Cancer.
Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MJ. Martínez-Puente DH, et al. Pharmaceutics. 2022 Sep 3;14(9):1861. doi: 10.3390/pharmaceutics14091861. Pharmaceutics. 2022. PMID: 36145609 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources