Eaten alive: novel insights into autophagy from multicellular model systems - PubMed (original) (raw)
Review
Eaten alive: novel insights into autophagy from multicellular model systems
Hong Zhang et al. Trends Cell Biol. 2015 Jul.
Abstract
Autophagy delivers cytoplasmic material to lysosomes for degradation. First identified in yeast, the core genes that control this process are conserved in higher organisms. Studies of mammalian cell cultures have expanded our understanding of the core autophagy pathway, but cannot reveal the unique animal-specific mechanisms for the regulation and function of autophagy. Multicellular organisms have different types of cells that possess distinct composition, morphology, and organization of intracellular organelles. In addition, the autophagic machinery integrates signals from other cells and environmental conditions to maintain cell, tissue and organism homeostasis. Here, we highlight how studies of autophagy in flies and worms have identified novel core autophagy genes and mechanisms, and provided insight into the context-specific regulation and function of autophagy.
Keywords: Caenorhabditis elegans; Drosophila melanogaster; aggrephagy; autophagy.
Copyright © 2015 Elsevier Ltd. All rights reserved.
Figures
Figure 1
Aggrephagy pathway in C. elegans. Selective removal of protein aggregates requires the hierarchical recruitment of receptor and scaffold proteins. Different scaffold proteins mediate the degradation of different cargo/receptor complexes. In degradation of PGL granules, arginine methylated PGL-1 and PGL-3, a process mediated by the C. elegans arginine methyltransferase PRMT1 homolog EPG-11, are recruited into SEPA-1 aggregates, which further associate with the scaffold protein EPG-2. The scaffold protein EPG-7 mediates the degradation of SQST-1. The cargo/receptor/scaffold complex recruits ATG proteins to trigger the formation of surrounding autophagosomal membranes. Genetic screens also identified several metazoan specific autophagy genes that are essential for degradation of both PGL granules and SQST-1 aggregates. The mammalian homologs of these genes are also required for the basal level of autophagy. EPG-3, -4, and -6 are involved in progression of omegasomes to isolation membranes/autophagosomes. EPG-5 is required for the formation of degradative autolysosomes. CUP-5 is essential for lysosomal function. ATG,; EPG,; PGL,; PRMT,; SEPA,; SQST,.
Figure 2
Regulation of autophagy activity. The mTORC1 and the VPS34/PI(3)P regulatory complexes have been shown to be the two most extensively studied nodes for integrating the status of nutrients, cellular energy, and growth factors with the autophagosome initiation. Nutrient status also regulates autophagosome maturation by regulating _O_-GlcNAylation of SNAP-29. Under starvation conditions, levels of UDP-GlcNAc are decreased, resulting in reduction of _O_-GlcNAc-modified SNAP-29 levels. Unmodified SNAP-29 forms a more stable SNARE complex with autophagosome-localized Stx17 and lysosomal VAMP8 to mediate the fusion of autophagosomes with endosomes/lysosomes. Starvation and other autophagy stimuli may also directly regulate OGT activity. Autophagy activity is also regulated by calcium signaling. In flies, the miRNA miR14 regulates translation of ip3k2 and IP3 levels in cells to control calcium levels and autophagy. IP3, inositol-1,4,5 trisphosphate; mTORC1, mammalian target of rapamycin serine/threonine kinase complex 1; OGT,; PI(3)P,; SNAP,; SNARE,; Stx,; VAMP,; VPS,.
Similar articles
- Aggrephagy: lessons from C. elegans.
Lu Q, Wu F, Zhang H. Lu Q, et al. Biochem J. 2013 Jun 15;452(3):381-90. doi: 10.1042/BJ20121721. Biochem J. 2013. PMID: 23725457 Review. - Four metazoan autophagy genes regulate cargo recognition, autophagosome formation and autolysosomal degradation.
Tian Y, Ren H, Zhao Y, Lu Q, Huang X, Yang P, Zhang H. Tian Y, et al. Autophagy. 2010 Oct;6(7):984-5. doi: 10.4161/auto.6.7.13156. Epub 2010 Oct 27. Autophagy. 2010. PMID: 20814246 - C. elegans screen identifies autophagy genes specific to multicellular organisms.
Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, Lu Q, Huang X, Yang P, Li X, Wang X, Kovács AL, Yu L, Zhang H. Tian Y, et al. Cell. 2010 Jun 11;141(6):1042-55. doi: 10.1016/j.cell.2010.04.034. Cell. 2010. PMID: 20550938 - Interactions between endosomal maturation and autophagy: analysis of ESCRT machinery during Caenorhabditis elegans development.
Manil-Ségalen M, Culetto E, Legouis R, Lefebvre C. Manil-Ségalen M, et al. Methods Enzymol. 2014;534:93-118. doi: 10.1016/B978-0-12-397926-1.00006-8. Methods Enzymol. 2014. PMID: 24359950 - Autophagy and Longevity.
Nakamura S, Yoshimori T. Nakamura S, et al. Mol Cells. 2018 Jan 31;41(1):65-72. doi: 10.14348/molcells.2018.2333. Epub 2018 Jan 23. Mol Cells. 2018. PMID: 29370695 Free PMC article. Review.
Cited by
- Role of autophagy in the chemopreventive effect of the IFC-305 compound in the sequential model of cirrhosis-hepatocellular carcinoma in the rat and in vitro.
Chávez E, Velasco-Loyden G, Lozano-Rosas MG, Aguilar-Maldonado B, Muciño-Hernández G, Castro-Obregón S, Chagoya de Sánchez V. Chávez E, et al. Am J Cancer Res. 2020 Jun 1;10(6):1844-1856. eCollection 2020. Am J Cancer Res. 2020. PMID: 32642295 Free PMC article. - Icariin alleviates osteoarthritis through PI3K/Akt/mTOR/ULK1 signaling pathway.
Chen Y, Pan X, Zhao J, Li C, Lin Y, Wang Y, Liu X, Tian M. Chen Y, et al. Eur J Med Res. 2022 Oct 17;27(1):204. doi: 10.1186/s40001-022-00820-x. Eur J Med Res. 2022. PMID: 36253872 Free PMC article. - Life, death and autophagy.
Doherty J, Baehrecke EH. Doherty J, et al. Nat Cell Biol. 2018 Oct;20(10):1110-1117. doi: 10.1038/s41556-018-0201-5. Epub 2018 Sep 17. Nat Cell Biol. 2018. PMID: 30224761 Free PMC article. Review. - The interplay of autophagy and non-apoptotic cell death pathways.
Miller DR, Cramer SD, Thorburn A. Miller DR, et al. Int Rev Cell Mol Biol. 2020;352:159-187. doi: 10.1016/bs.ircmb.2019.12.004. Epub 2020 Jan 13. Int Rev Cell Mol Biol. 2020. PMID: 32334815 Free PMC article. Review. - Research progress on morphology and mechanism of programmed cell death.
Chen Y, Li X, Yang M, Liu SB. Chen Y, et al. Cell Death Dis. 2024 May 10;15(5):327. doi: 10.1038/s41419-024-06712-8. Cell Death Dis. 2024. PMID: 38729953 Free PMC article. Review.
References
- Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993;333:169–174. - PubMed
- Thumm M, et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 1994;349:275–280. - PubMed
- Harding TM, et al. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein. J. Biol. Chem. 1996;271:17621–17624. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- GM079431/GM/NIGMS NIH HHS/United States
- R01 CA159314/CA/NCI NIH HHS/United States
- CA159314/CA/NCI NIH HHS/United States
- R01 GM079431/GM/NIGMS NIH HHS/United States
- GM111658/GM/NIGMS NIH HHS/United States
- R01 AI099708/AI/NIAID NIH HHS/United States
- R01 GM111658/GM/NIGMS NIH HHS/United States
- AI099708/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases