Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis - PubMed (original) (raw)
Review
. 2015 May;14(3):293-304.
doi: 10.1016/j.jcf.2015.03.012. Epub 2015 Apr 14.
Affiliations
- PMID: 25881770
- DOI: 10.1016/j.jcf.2015.03.012
Free article
Review
Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis
Michael D Parkins et al. J Cyst Fibros. 2015 May.
Free article
Abstract
Chronic suppurative lower airway infection is a hallmark feature of cystic fibrosis (CF). Decades of experience in clinical microbiology have enabled the development of improved technologies and approaches for the cultivation and identification of microorganisms from sputum. It is increasingly apparent that the microbial constituents of the lower airways in CF exist in a dynamic state. Indeed, while changes in prevalence of various pathogens occur through ageing, differences exist in successive cohorts of patients and between clinics, regions and countries. Classical pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex and Staphylococcus aureus are increasingly being supplemented with new and emerging organisms rarely observed in other areas of medicine. Moreover, it is now recognized that common oropharyngeal organisms, previously presumed to be benign colonizers may contribute to disease progression. As infection remains the leading cause of morbidity and mortality in CF, an understanding of the epidemiology, risk factors for acquisition and natural history of infection including interactions between colonizing bacteria is required. Unified approaches to the study and determination of pathogen status are similarly needed. Furthermore, experienced and evidence-based treatment data is necessary to optimize outcomes for individuals with CF.
Keywords: Achromobacter xylosoxidans; Methicillin resistant Staphylococcus aureus (MRSA); Microbiome; Mycobacterium abscessus; Mycobacterium avium complex; Stenotrophomonas maltophilia.
Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Similar articles
- Assessment of the Microbial Constituents of the Home Environment of Individuals with Cystic Fibrosis (CF) and Their Association with Lower Airways Infections.
Heirali A, McKeon S, Purighalla S, Storey DG, Rossi L, Costilhes G, Drews SJ, Rabin HR, Surette MG, Parkins MD. Heirali A, et al. PLoS One. 2016 Feb 9;11(2):e0148534. doi: 10.1371/journal.pone.0148534. eCollection 2016. PLoS One. 2016. PMID: 26859493 Free PMC article. - Microbial Interactions in the Cystic Fibrosis Airway.
Granchelli AM, Adler FR, Keogh RH, Kartsonaki C, Cox DR, Liou TG. Granchelli AM, et al. J Clin Microbiol. 2018 Jul 26;56(8):e00354-18. doi: 10.1128/JCM.00354-18. Print 2018 Aug. J Clin Microbiol. 2018. PMID: 29769279 Free PMC article. - Changing Epidemiology of the Respiratory Bacteriology of Patients With Cystic Fibrosis.
Salsgiver EL, Fink AK, Knapp EA, LiPuma JJ, Olivier KN, Marshall BC, Saiman L. Salsgiver EL, et al. Chest. 2016 Feb;149(2):390-400. doi: 10.1378/chest.15-0676. Epub 2016 Jan 12. Chest. 2016. PMID: 26203598 Free PMC article. - Emerging cystic fibrosis pathogens and the microbiome.
Mahenthiralingam E. Mahenthiralingam E. Paediatr Respir Rev. 2014 Jun;15 Suppl 1:13-5. doi: 10.1016/j.prrv.2014.04.006. Epub 2014 Apr 13. Paediatr Respir Rev. 2014. PMID: 24832700 Review. - [Emerging bacteria in cystic fibrosis and non-cystic fibrosis bronchiectasis from a microbiologist's perspective].
Menetrey Q, Dupont C, Chiron R, Marchandin H. Menetrey Q, et al. Rev Mal Respir. 2020 Sep;37(7):561-571. doi: 10.1016/j.rmr.2020.06.006. Epub 2020 Jul 16. Rev Mal Respir. 2020. PMID: 32684338 Review. French.
Cited by
- Approaches to Targeting Bacterial Biofilms in Cystic Fibrosis Airways.
Martin I, Waters V, Grasemann H. Martin I, et al. Int J Mol Sci. 2021 Feb 22;22(4):2155. doi: 10.3390/ijms22042155. Int J Mol Sci. 2021. PMID: 33671516 Free PMC article. Review. - Burkholderia cenocepacia Induces Macropinocytosis to Enter Macrophages.
Rosales-Reyes R, Sánchez-Gómez C, Ortiz-Navarrete V, Santos-Preciado JI. Rosales-Reyes R, et al. Biomed Res Int. 2018 Apr 22;2018:4271560. doi: 10.1155/2018/4271560. eCollection 2018. Biomed Res Int. 2018. PMID: 29850514 Free PMC article. - Identification and analysis of genomic islands in Burkholderia cenocepacia AU 1054 with emphasis on pathogenicity islands.
Guo FB, Xiong L, Zhang KY, Dong C, Zhang FZ, Woo PC. Guo FB, et al. BMC Microbiol. 2017 Mar 27;17(1):73. doi: 10.1186/s12866-017-0986-6. BMC Microbiol. 2017. PMID: 28347342 Free PMC article. - Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa.
Pages-Monteiro L, Marti R, Commun C, Alliot N, Bardel C, Meugnier H, Perouse-de-Montclos M, Reix P, Durieu I, Durupt S, Vandenesch F, Freney J, Cournoyer B, Doleans-Jordheim A. Pages-Monteiro L, et al. PLoS One. 2017 Mar 10;12(3):e0173022. doi: 10.1371/journal.pone.0173022. eCollection 2017. PLoS One. 2017. PMID: 28282386 Free PMC article. - MmpL3 as a Target for the Treatment of Drug-Resistant Nontuberculous Mycobacterial Infections.
Li W, Yazidi A, Pandya AN, Hegde P, Tong W, Calado Nogueira de Moura V, North EJ, Sygusch J, Jackson M. Li W, et al. Front Microbiol. 2018 Jul 10;9:1547. doi: 10.3389/fmicb.2018.01547. eCollection 2018. Front Microbiol. 2018. PMID: 30042757 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials