The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation - PubMed (original) (raw)
. 2015 Jul 8;589(15):1802-6.
doi: 10.1016/j.febslet.2015.05.032. Epub 2015 May 27.
Affiliations
- PMID: 26026269
- DOI: 10.1016/j.febslet.2015.05.032
Free article
The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation
Beata M Wieckowski et al. FEBS Lett. 2015.
Free article
Abstract
Thurincin H is a 31-residue, ribosomally synthesized bacteriocin originating from the thn operon of Bacillus thuringiensis SF361. It is the only known sactipeptide carrying four thioether bridges between four cysteines and the α-carbons of a serine, an asparagine and two threonine residues. By analysis of the thn operon and use of in vitro studies we now reveal that ThnB is a radical S-adenosylmethionine (SAM) enzyme containing two [4Fe-4S] clusters. Furthermore, we confirm the involvement of ThnB in the formation of the thioether bonds present within the structure of thurincin H. Finally, we show that the PqqD homologous N-terminal domain of ThnB is essential for maturation of the thurincin H precursor peptide, but not for the SAM cleavage activity of ThnB.
Keywords: Biosynthesis; Natural product; Radical SAM enzyme; Ribosomal peptide; Sactipeptide; [4Fe–4S] cluster.
Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Similar articles
- Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes.
Balty C, Guillot A, Fradale L, Brewee C, Lefranc B, Herrero C, Sandström C, Leprince J, Berteau O, Benjdia A. Balty C, et al. J Biol Chem. 2020 Dec 4;295(49):16665-16677. doi: 10.1074/jbc.RA120.015371. Epub 2020 Sep 24. J Biol Chem. 2020. PMID: 32972973 Free PMC article. - Role of the sulfur to α-carbon thioether bridges in thurincin H.
Mozolewska MA, Sieradzan AK, Niadzvedstki A, Czaplewski C, Liwo A, Krupa P. Mozolewska MA, et al. J Biomol Struct Dyn. 2017 Oct;35(13):2868-2879. doi: 10.1080/07391102.2016.1234414. Epub 2016 Oct 5. J Biomol Struct Dyn. 2017. PMID: 27615507 - The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A.
Flühe L, Knappe TA, Gattner MJ, Schäfer A, Burghaus O, Linne U, Marahiel MA. Flühe L, et al. Nat Chem Biol. 2012 Feb 26;8(4):350-7. doi: 10.1038/nchembio.798. Nat Chem Biol. 2012. PMID: 22366720 - Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.
Flühe L, Marahiel MA. Flühe L, et al. Curr Opin Chem Biol. 2013 Aug;17(4):605-12. doi: 10.1016/j.cbpa.2013.06.031. Epub 2013 Jul 24. Curr Opin Chem Biol. 2013. PMID: 23891473 Review. - Structural characterization of thioether-bridged bacteriocins.
Lohans CT, Vederas JC. Lohans CT, et al. J Antibiot (Tokyo). 2014 Jan;67(1):23-30. doi: 10.1038/ja.2013.81. Epub 2013 Sep 11. J Antibiot (Tokyo). 2014. PMID: 24022605 Review.
Cited by
- Micrococcin cysteine-to-thiazole conversion through transient interactions between the scaffolding protein TclI and the modification enzymes TclJ and TclN.
Calvopina-Chavez DG, Bursey DM, Tseng Y-J, Patil LM, Bewley KD, Bennallack PR, McPhie JM, Wagstaff KB, Daley A, Miller SM, Moody JD, Price JC, Griffitts JS. Calvopina-Chavez DG, et al. Appl Environ Microbiol. 2024 Jun 18;90(6):e0024424. doi: 10.1128/aem.00244-24. Epub 2024 May 23. Appl Environ Microbiol. 2024. PMID: 38780510 Free PMC article. - Structural, Biochemical, and Bioinformatic Basis for Identifying Radical SAM Cyclopropyl Synthases.
Lien Y, Lachowicz JC, Mendauletova A, Zizola C, Ngendahimana T, Kostenko A, Eaton SS, Latham JA, Grove TL. Lien Y, et al. ACS Chem Biol. 2024 Feb 16;19(2):370-379. doi: 10.1021/acschembio.3c00583. Epub 2024 Jan 31. ACS Chem Biol. 2024. PMID: 38295270 - Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products.
Fernandez-Cantos MV, Garcia-Morena D, Yi Y, Liang L, Gómez-Vázquez E, Kuipers OP. Fernandez-Cantos MV, et al. Front Microbiol. 2023 Jul 4;14:1219272. doi: 10.3389/fmicb.2023.1219272. eCollection 2023. Front Microbiol. 2023. PMID: 37469430 Free PMC article. - Catalytic Site Proximity Profiling for Functional Unification of Sequence-Diverse Radical _S_-Adenosylmethionine Enzymes.
Precord TW, Ramesh S, Dommaraju SR, Harris LA, Kille BL, Mitchell DA. Precord TW, et al. ACS Bio Med Chem Au. 2023 Mar 1;3(3):240-251. doi: 10.1021/acsbiomedchemau.2c00085. eCollection 2023 Jun 21. ACS Bio Med Chem Au. 2023. PMID: 37363077 Free PMC article. - How a Subfamily of Radical S-Adenosylmethionine Enzymes Became a Mainstay of Ribosomally Synthesized and Post-translationally Modified Peptide Discovery.
Mendauletova A, Kostenko A, Lien Y, Latham J. Mendauletova A, et al. ACS Bio Med Chem Au. 2021 Dec 2;2(1):53-59. doi: 10.1021/acsbiomedchemau.1c00045. eCollection 2022 Feb 16. ACS Bio Med Chem Au. 2021. PMID: 37102180 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources