LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages - PubMed (original) (raw)

Anna P Lillis et al. PLoS One. 2015.

Erratum in

Abstract

Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1

Fig 1. Effective deletion of the Lrp1 gene in elicited macrophages, bone marrow-derived macrophages, and Kupffer cells.

(a) Quantitative real-time PCR was performed on bone marrow derived macrophages to determine Lrp1 levels (**p = 0.005, Student’s t-test comparing LRP1+/+ with macLRP1-/-, n = 3 independent experiments). (b) Elicited peritoneal-derived macrophages from LRP1+/+ and macLRP1-/- mice were measured for their ability to internalize activated forms of 125I-labeled α2-macroglobulin (*p = 0.003, Student’s t-test comparing LRP1+/+ with macLRP1-/-, n = 2 independent experiments). (c) macLRP1-/- (open symbols) and LRP1+/+ (closed symbols) mice were injected with 125I-α2M* alone or with excess RAP. Plasma was sampled over time and counted. Counts were normalized to the amount of radioactivity detected at 1 min following injection. (125I-α2M*, n = 6; 125I-α2M* + RAP, n = 3). Error bars denote SEM. (d-i) Formalin-fixed paraffin-embedded liver sections from Western-fed LRP1+/+ (d-f) and macLRP1-/- mice (g-i) were stained with Alexa 488-anti-Mac-2 (d,g) and Alexa 546-anti-LRP1 (e,h) antibodies. Fluorescent channels merged with phase contrast images of the tissue (f,i) show yellow co-staining of LRP1 and Mac-2 in LRP1+/+ livers (f). No co-staining was observed in the macLRP1-/- livers (i). Livers from three sibling pairs of mice were stained. Representative fields from one pair are shown.

Fig 2

Fig 2. Peritoneal macrophages from macLRP1-/- mice are defective in cholesterol ester accumulation.

(a) LRP1+/+ (upper panel) or macLRP1-/- mice (lower panel) were fed a Western diet for 11 weeks. After this period, thioglycollate-elicited peritoneal macrophages were analyzed by Oil red O staining. (b). Quantification of the percentage of cells containing Oil red O positive staining. Macrophages from LRP1+/+ (n = 3) and macLRP1-/- (n = 3) were pooled and stained with Oil red O. Four fields for each genotype were counted. (*p = 0.0016, Student’s t-test comparing LRP1+/+ with macLRP1-/-). (c,d) Thioglycollate-elicited peritoneal macrophages from LRP1+/+ and macLRP1-/- (n = 3 for both) were isolated from mice following 11 weeks (c) or 3 weeks (d) on a Western diet, and cholesterol levels were measured. (* p<0.05, **p<0.004, Student’s t-test comparing LRP1+/+ with macLRP1-/-, n = 7). TC, total cholesterol; FC, free cholesterol; CE, cholesterol ester.

Fig 3

Fig 3. Macrophages from macLRP1-/- mice are defective in internalizing aggregated LDL.

(a) Thioglycollate-elicited peritoneal macrophages from LRP1+/+ and macLRP1-/- mice were cultured in DMEM supplemented with 5% delipidated fetal calf serum containing 80 μg/ml LDL, oxidized LDL, VLDL, or chlylomicrons for 3 days at 37°C. Lipids were then extracted and total cholesterol was measured and normalized to total cell protein. (b,c) Thioglycollate-elicited peritoneal macrophages from LRP1+/+ and macLRP1-/- mice were cultured in DMEM supplemented with 5% delipidated fetal calf serum. DiI-labeled aggregated LDL was then incubated with LRP1+/+ (b) or macLRP1-/- macrophages (c) for 24 h at 37°C and analyzed for lipoprotein internalization by fluorescence microscopy. (d) The extent of internalized fluorescence was quantified using Velocity Software (*p<0.001, Student’s t-test comparing LRP1+/+ with macLRP1-/-) (e) Cholesterol efflux of peritoneal macrophages from LRP1+/+ and macLRP1-/- mice (n = 3). (f) Cholesterol efflux measured at 6 h in the presence or absence of cAMP (n = 3).

Fig 4

Fig 4. No changes in ABCA1 and ApoE protein and mRNA levels in macLRP1-/- macrophages.

(a) Cell extracts from thioglycollate-elicited peritoneal macrophages isolated from mice fed a Western diet for 11 weeks were subjected to immunoblot analysis for ABCA1 or ApoE (n = 4). (b) ABCA1 protein levels and (c) ApoE protein levels normalized to GAPDH were quantified using NIH ImageJ software. (d,e) Quantitative RT-PCR was employed to measure levels of Abca1 (d) and apoE (e) and Abcg1 (f) mRNA (n = 3). (g) Lipase activity was measured following heparin elution from LRP1+/+ and macLRP1-/- macrophages. (*p<0.001, n = 4 Student’s t-test comparing LRP1+/+ with macLRP1-/-).

Fig 5

Fig 5. Macrophage LRP1 deficiency leads to accumulation of triglyceride-rich lipoproteins in the plasma of LDLR-deficient mice.

Mice were fed either a normal chow (a, left; b, left) or Western diet (a, right; b, right; c,d) for six weeks. Aliquots of serum from fasted mice were assayed for cholesterol (a) or triglyceride (b) (* p = 0.0004, **p = 0.003, n = 19 per group, Student’s t-test comparing LRP1+/+ with macLRP1-/-). (c,d) 100 μl of pooled serum (n = 19/group) from macLRP1-/- and LRP1+/+ mice was fractionated over a Superose 6 FPLC column. Plasma cholesterol (c) and triglyceride (d) levels were quantified. Three independent experiments were performed, each with a unique cohort of mice. Data from one representative experiment is shown.

Fig 6

Fig 6. Normal ratios of apolipoproteins in the isolated d<1.019 lipoprotein fraction.

The d<1.019 fraction from pooled plasma of LRP1+/+ and macLRP1-/- mice was isolated. (a) 15 μg of protein from the d<1.019 fraction was analyzed by SDS-PAGE (n = 2) (b) ApoE area was quantified using NIH ImageJ. (c) Ratio of apoB100 to apoE and (d) ratio of apoB48 to apoE were determined using NIH ImageJ. (e) Immunoblot for apoC3 and apoE content and (f) the ratio of apoC3 to apoE in the d<1.019 fraction for LRP1+/+ and macLRP1-/- mice (n = 3). (ns, not significant as determined by Student’s t test comparing LRP1+/+ with macLRP1-/-).

Fig 7

Fig 7. Postprandial serum lipids remain elevated in macLRP1-/- mice.

(a) Mice (macLRP1-/-, n = 11; LRP1+/+, n = 10) were fed Western diet for 3 weeks, and were then injected with Triton WR-1339 (500 mg/kg body weight), and triglyceride levels in the plasma were determined at 0, 30, 60 and 90 min following injection. The rate of triglyceride synthesis is shown. Error bars show the SEM. (b) LRP1+/+ mice (closed symbols, n = 5) or macLRP1-/- mice (open symbols, n = 5) fed a Chow diet were fasted and then received an intragastric olive oil load. Blood samples were collected at the indicated times, and plasma triglyceride levels measured. Error bars show the SEM. (Data were analyzed for statistical significance employing a two way ANOVA which confirmed significant effects for Genotype (p = 0.0012) and Time (p = 0.0001) with no significant Genotype X Time interaction).

Fig 8

Fig 8. Normal lipase activity in macLRP1-/- mice.

Adult mice were fed either Western or normal chow diet for 3 weeks. Following fasting, the epididymal fat (a), livers (b), soleus muscles (c) and gastrocnemius muscles (d) were harvested. Lipase was eluted from cell surfaces with heparin, and quantified. (Chow diet: macLRP1-/-, n = 4; LRP1+/+, n = 3; Western diet: macLRP1-/-, n = 6; LRP1+/+, n = 6) (ns, not significant as determined by Student’s t test comparing LRP1+/+ with macLRP1-/-).

References

    1. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473: 317–325. 10.1038/nature10146 - DOI - PubMed
    1. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47. - PubMed
    1. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52: 223–261. - PubMed
    1. Goldstein JL, Ho YK, Basu SK, Brown MS (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 76: 333–337. - PMC - PubMed
    1. Traber MG, Kayden HJ (1980) Low density lipoprotein receptor activity in human monocyte-derived macrophages and its relation to atheromatous lesions. Proc Natl Acad Sci U S A 77: 5466–5470. - PMC - PubMed

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources