A colloidal quantum dot spectrometer - PubMed (original) (raw)
. 2015 Jul 2;523(7558):67-70.
doi: 10.1038/nature14576.
Affiliations
- PMID: 26135449
- DOI: 10.1038/nature14576
A colloidal quantum dot spectrometer
Jie Bao et al. Nature. 2015.
Abstract
Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.
Comment in
- Nanotechnology: Colourful particles for spectrometry.
Anheier NC. Anheier NC. Nature. 2015 Jul 2;523(7558):39-40. doi: 10.1038/523039a. Nature. 2015. PMID: 26135442 No abstract available.
Similar articles
- Broadband perovskite quantum dot spectrometer beyond human visual resolution.
Zhu X, Bian L, Fu H, Wang L, Zou B, Dai Q, Zhang J, Zhong H. Zhu X, et al. Light Sci Appl. 2020 Apr 29;9:73. doi: 10.1038/s41377-020-0301-4. eCollection 2020. Light Sci Appl. 2020. PMID: 32377335 Free PMC article. - Narrowband colloidal quantum dot photodetectors for wavelength measurement applications.
De Iacovo A , Venettacci C , Giansante C , Colace L . De Iacovo A , et al. Nanoscale. 2020 May 14;12(18):10044-10050. doi: 10.1039/d0nr02626c. Nanoscale. 2020. PMID: 32342966 - Spectrum Reconstruction with Filter-Free Photodetectors Based on Graded-Band-Gap Perovskite Quantum Dot Heterojunctions.
Wang XL, Chen Y, Chu Y, Liu WJ, Zhang DW, Ding SJ, Wu X. Wang XL, et al. ACS Appl Mater Interfaces. 2022 Mar 30;14(12):14455-14465. doi: 10.1021/acsami.1c24962. Epub 2022 Mar 21. ACS Appl Mater Interfaces. 2022. PMID: 35311251 - New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions.
Algar WR, Krull UJ. Algar WR, et al. Anal Bioanal Chem. 2010 Nov;398(6):2439-49. doi: 10.1007/s00216-010-3837-y. Epub 2010 May 30. Anal Bioanal Chem. 2010. PMID: 20512564 Review. - Quantum dot: magic nanoparticle for imaging, detection and targeting.
Ghasemi Y, Peymani P, Afifi S. Ghasemi Y, et al. Acta Biomed. 2009 Aug;80(2):156-65. Acta Biomed. 2009. PMID: 19848055 Review.
Cited by
- Ultra-simplified diffraction-based computational spectrometer.
Chen C, Gu H, Liu S. Chen C, et al. Light Sci Appl. 2024 Jan 5;13(1):9. doi: 10.1038/s41377-023-01355-4. Light Sci Appl. 2024. PMID: 38177112 Free PMC article. - Effect of Post Thermal Annealing on the Optical Properties of InP/ZnS Quantum Dot Films.
Zhang B, Wei Z, Wang X, Fang X, Wang D, Gao X, Fang D, Wang X, Chen R. Zhang B, et al. Nanoscale Res Lett. 2018 Nov 20;13(1):369. doi: 10.1186/s11671-018-2784-y. Nanoscale Res Lett. 2018. PMID: 30460420 Free PMC article. - Influence of Ink Properties on the Morphology of Long-Wave Infrared HgSe Quantum Dot Films.
Wang S, Zhang X, Wang Y, Guo T, Cao S. Wang S, et al. Nanomaterials (Basel). 2022 Jun 24;12(13):2180. doi: 10.3390/nano12132180. Nanomaterials (Basel). 2022. PMID: 35808016 Free PMC article. - Advances in cost-effective integrated spectrometers.
Li A, Yao C, Xia J, Wang H, Cheng Q, Penty R, Fainman Y, Pan S. Li A, et al. Light Sci Appl. 2022 Jun 7;11(1):174. doi: 10.1038/s41377-022-00853-1. Light Sci Appl. 2022. PMID: 35672298 Free PMC article. Review. - Transparent Displays Utilizing Nanopatterned Quantum Dot Films.
Shin SH, Hwang B, Zhao ZJ, Jeon SH, Jung J, Lee JH, Ju BK, Jeong JH. Shin SH, et al. Sci Rep. 2018 Feb 6;8(1):2463. doi: 10.1038/s41598-018-20869-1. Sci Rep. 2018. PMID: 29410483 Free PMC article.
References
- Anal Chem. 1996 Dec 1;68(23):4200-12 - PubMed
- Lab Chip. 2007 Jan;7(1):41-57 - PubMed
- Angew Chem Int Ed Engl. 2008;47(45):8638-41 - PubMed
- J Am Chem Soc. 2001 Jan 10;123(1):183-4 - PubMed
- Nat Methods. 2008 Sep;5(9):763-75 - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources