Highly preferential nucleation of histone H1 assembly on scaffold-associated regions - PubMed (original) (raw)
Highly preferential nucleation of histone H1 assembly on scaffold-associated regions
E Izaurralde et al. J Mol Biol. 1989.
Abstract
Scaffold-associated regions (SARs) are A + T-rich DNA regions of several hundred base-pairs that are known to bind specifically to nuclear or metaphase scaffolds. Surprisingly, histone H1 specifically associates with SARs. Under conditions of high co-operativity, at input ratios of H1 to DNA up to 15% (w/w), histone H1 binds preferentially to those DNA molecules harboring a SAR, leaving the non-SAR fragments free. Our experiments identify SARs as cis-acting sequences that nucleate co-operative H1 assembly along the SAR into the flanking non-SAR DNA. Experiments with simple DNA polymers implicate homopolymeric oligo(dA).oligo(dT) tracts in preferential histone H1 assembly. The homopolymer oligo(dA).oligo(dT) is, above a critical length of 130 base-pairs, a highly specific nucleator of H1 assembly. SARs may control the conformation of chromatin domains via a regulated H1 assembly and set up the potential transcriptional repertoire of the cell.
Similar articles
- Specific inhibition of DNA binding to nuclear scaffolds and histone H1 by distamycin. The role of oligo(dA).oligo(dT) tracts.
Käs E, Izaurralde E, Laemmli UK. Käs E, et al. J Mol Biol. 1989 Dec 5;210(3):587-99. doi: 10.1016/0022-2836(89)90134-4. J Mol Biol. 1989. PMID: 2614835 - The preferential binding of histone H1 to DNA scaffold-associated regions is determined by its C-terminal domain.
Roque A, Orrego M, Ponte I, Suau P. Roque A, et al. Nucleic Acids Res. 2004 Nov 23;32(20):6111-9. doi: 10.1093/nar/gkh945. Print 2004. Nucleic Acids Res. 2004. PMID: 15562002 Free PMC article. - SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin.
Zhao K, Käs E, Gonzalez E, Laemmli UK. Zhao K, et al. EMBO J. 1993 Aug;12(8):3237-47. doi: 10.1002/j.1460-2075.1993.tb05993.x. EMBO J. 1993. PMID: 8344261 Free PMC article. - Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics.
Roque A, Ponte I, Suau P. Roque A, et al. Chromosoma. 2017 Feb;126(1):83-91. doi: 10.1007/s00412-016-0591-8. Epub 2016 Apr 21. Chromosoma. 2017. PMID: 27098855 Review. - Possible role of H1 histone in replication timing.
Flickinger RA. Flickinger RA. Dev Growth Differ. 2015 Jan;57(1):1-9. doi: 10.1111/dgd.12190. Epub 2014 Dec 14. Dev Growth Differ. 2015. PMID: 25495214 Review.
Cited by
- Chromosomal proteins of Physarum polycephalum with preferential affinity for the sequence, poly d(A-T).poly d(A-T).
Magor KA, Wright JM. Magor KA, et al. Mol Biol Rep. 1992 May;16(2):105-15. doi: 10.1007/BF00419756. Mol Biol Rep. 1992. PMID: 1608398 - Complex Evolutionary History of the Mammalian Histone H1.1-H1.5 Gene Family.
Ponte I, Romero D, Yero D, Suau P, Roque A. Ponte I, et al. Mol Biol Evol. 2017 Mar 1;34(3):545-558. doi: 10.1093/molbev/msw241. Mol Biol Evol. 2017. PMID: 28100789 Free PMC article. - Macromolecular crowding induces a molten globule state in the C-terminal domain of histone H1.
Roque A, Ponte I, Suau P. Roque A, et al. Biophys J. 2007 Sep 15;93(6):2170-7. doi: 10.1529/biophysj.107.104513. Epub 2007 May 18. Biophys J. 2007. PMID: 17513371 Free PMC article. - Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin.
Choi J, Lyons DB, Zilberman D. Choi J, et al. Elife. 2021 Dec 1;10:e72676. doi: 10.7554/eLife.72676. Elife. 2021. PMID: 34850679 Free PMC article. - A model for chromatin opening: stimulation of topoisomerase II and restriction enzyme cleavage of chromatin by distamycin.
Käs E, Poljak L, Adachi Y, Laemmli UK. Käs E, et al. EMBO J. 1993 Jan;12(1):115-26. doi: 10.1002/j.1460-2075.1993.tb05637.x. EMBO J. 1993. PMID: 8381347 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous