An analysis of epipubic bone function in mammals using scaling theory - PubMed (original) (raw)

An analysis of epipubic bone function in mammals using scaling theory

T D White. J Theor Biol. 1989.

Abstract

Linear dimensions of epipubic bones in 61 species of metatherians and monotremes scale to mass differently in groups with or without marsupia, presumably reflecting emphasis on different but non-mutually exclusive functions. Sexual dimorphism of epipubic form exists. However, the allometric relationships of the epipubic bones of taxa that possess marsupia do not conform to the hypothesis that epipubic bones support the marsupium nearly as well as those without a marsupium. This observation renders a new hypothesis relating litter mass to epipubic form in taxa without marsupia. It appears that support of the marsupium is not the primary function or, at least, not the most proximate determinate of epipubic form in taxa with marsupia. The scaling of epipubic bone dimensions is consistent with the hypothesis that predicts epipubic bones serve to assist in locomotion by acting with the hypaxial muscles of the trunk and pectineus to protract the pelvic limbs. Epipubic length is shown to scale to maintain a mechanical advantage between these opposing muscle groups that approximates the rate that inertia of the hind limbs increases with total mass and speed of locomotion. This hypothesis provides an explanation for a skeletal element scaling significantly above geometric similarity. This observation has important theoretical significance as it suggests that skeletal architecture may, within limits, scale independently of mass-related stress.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms