Reconsidering DNA Polymerases at the Replication Fork in Eukaryotes - PubMed (original) (raw)
Comment
Reconsidering DNA Polymerases at the Replication Fork in Eukaryotes
Bruce Stillman. Mol Cell. 2015.
Abstract
The distribution of DNA polymerase activities at the eukaryotic DNA replication fork was "established," but recent genetic studies in this issue of Molecular Cell raise questions about which polymerases are copying the leading and lagging strand templates (Johnson et al, 2015).
Copyright © 2015 Elsevier Inc. All rights reserved.
Figures
Figure 1. DNA Polymerases at the Eukaryotic DNA Replication Fork
(A) DNA polymerase δ synthesizes DNA during lagging (discontinuously synthesized, top) and leading (continuously synthesized, bottom) replication. (B) The prevailing model in which DNA polymerase δ synthesizes the lagging strand and polymerase ε the leading strand. (C) A potential new model in which DNA polymerase δ normally replicates both strands and, upon DNA damage in the leading strand template, a switch to polymerase ε occurs, linking DNA-damage detection to the essential role for polymerase ε and associated checkpoint proteins. In all cases, DNA polymerase α is coupled with primase to synthesize a RNA-DNA primer on the lagging strand that is recognized by RFC and PCNA to switch to the replicative polymerase. PCNA couples other events at the replication fork, such as nucleosome assembly.
Comment on
- A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands.
Johnson RE, Klassen R, Prakash L, Prakash S. Johnson RE, et al. Mol Cell. 2015 Jul 16;59(2):163-175. doi: 10.1016/j.molcel.2015.05.038. Epub 2015 Jul 2. Mol Cell. 2015. PMID: 26145172 Free PMC article.
Similar articles
- Who Is Leading the Replication Fork, Pol ε or Pol δ?
Burgers PMJ, Gordenin D, Kunkel TA. Burgers PMJ, et al. Mol Cell. 2016 Feb 18;61(4):492-493. doi: 10.1016/j.molcel.2016.01.017. Mol Cell. 2016. PMID: 26895421 Free PMC article. No abstract available. - Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork.
Schauer GD, O'Donnell ME. Schauer GD, et al. Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):675-680. doi: 10.1073/pnas.1619748114. Epub 2017 Jan 9. Proc Natl Acad Sci U S A. 2017. PMID: 28069954 Free PMC article. - Response to Burgers et al.
Johnson RE, Klassen R, Prakash L, Prakash S. Johnson RE, et al. Mol Cell. 2016 Feb 18;61(4):494-495. doi: 10.1016/j.molcel.2016.01.018. Mol Cell. 2016. PMID: 26895422 No abstract available. - Dividing the workload at a eukaryotic replication fork.
Kunkel TA, Burgers PM. Kunkel TA, et al. Trends Cell Biol. 2008 Nov;18(11):521-7. doi: 10.1016/j.tcb.2008.08.005. Epub 2008 Sep 27. Trends Cell Biol. 2008. PMID: 18824354 Free PMC article. Review. - DNA Replication Through Strand Displacement During Lagging Strand DNA Synthesis in Saccharomyces cerevisiae.
Giannattasio M, Branzei D. Giannattasio M, et al. Genes (Basel). 2019 Feb 21;10(2):167. doi: 10.3390/genes10020167. Genes (Basel). 2019. PMID: 30795600 Free PMC article. Review.
Cited by
- The architecture of a eukaryotic replisome.
Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT, Li H, O'Donnell ME. Sun J, et al. Nat Struct Mol Biol. 2015 Dec;22(12):976-82. doi: 10.1038/nsmb.3113. Epub 2015 Nov 2. Nat Struct Mol Biol. 2015. PMID: 26524492 Free PMC article. - Iron-Sulfur Clusters in DNA Polymerases and Primases of Eukaryotes.
Baranovskiy AG, Siebler HM, Pavlov YI, Tahirov TH. Baranovskiy AG, et al. Methods Enzymol. 2018;599:1-20. doi: 10.1016/bs.mie.2017.09.003. Epub 2017 Dec 6. Methods Enzymol. 2018. PMID: 29746236 Free PMC article. - Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae.
Garbacz MA, Lujan SA, Burkholder AB, Cox PB, Wu Q, Zhou ZX, Haber JE, Kunkel TA. Garbacz MA, et al. Nat Commun. 2018 Feb 27;9(1):858. doi: 10.1038/s41467-018-03270-4. Nat Commun. 2018. PMID: 29487291 Free PMC article. - Large-scale expansions of Friedreich's ataxia GAA•TTC repeats in an experimental human system: role of DNA replication and prevention by LNA-DNA oligonucleotides and PNA oligomers.
Rastokina A, Cebrián J, Mozafari N, Mandel NH, Smith CIE, Lopes M, Zain R, Mirkin SM. Rastokina A, et al. Nucleic Acids Res. 2023 Sep 8;51(16):8532-8549. doi: 10.1093/nar/gkad441. Nucleic Acids Res. 2023. PMID: 37216608 Free PMC article. - Chromatin Constrains the Initiation and Elongation of DNA Replication.
Devbhandari S, Jiang J, Kumar C, Whitehouse I, Remus D. Devbhandari S, et al. Mol Cell. 2017 Jan 5;65(1):131-141. doi: 10.1016/j.molcel.2016.10.035. Epub 2016 Dec 15. Mol Cell. 2017. PMID: 27989437 Free PMC article.
References
- Dua R, Levy DL, Campbell JL. J. Biol. Chem. 1999;274:22283–22288. - PubMed
- Hogg M, Osterman P, Bylund GO, Ganai RA, Lundström EB, Sauer-Eriksson AE, Johansson E. Nat. Struct. Mol. Biol. 2014;21:49–55. - PubMed
- Jinks-Robertson S, Klein HL. Nat. Struct. Mol. Biol. 2015;22:176–178. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- CA13106/CA/NCI NIH HHS/United States
- P30 CA045508/CA/NCI NIH HHS/United States
- P01 CA013106/CA/NCI NIH HHS/United States
- GM45436/GM/NIGMS NIH HHS/United States
- R01 GM045436/GM/NIGMS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases