Linking diet to acne metabolomics, inflammation, and comedogenesis: an update - PubMed (original) (raw)
Review
Linking diet to acne metabolomics, inflammation, and comedogenesis: an update
Bodo C Melnik. Clin Cosmet Investig Dermatol. 2015.
Abstract
Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a "danger signal," stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris.
Keywords: acne; comedogenesis; diet; inflammasome; metabolomics; quorum sensing.
Figures
Figure 1
Acne vulgaris: a Western diet-induced sebofollicular inflammasomopathy. Abbreviations: IGF-1, insulin-like growth factor 1; BCAAs, branched-chain amino acids; miR21, microRNA-21; FoxO1, forkhead box class O1; mTORC1, mechanistic target of rapamycin complex 1; AR, androgen receptor; PPARγ, peroxisome proliferator-activated receptor-γ; LXRα, liver X receptor-α; SREBP1c, sterol response element binding protein 1c; Δ6D, Δ6-desaturase; SCD, stearoyl-CoA desaturase; TG, triglyceride; P. acnes, Propionibacterium acnes; QS, quorum sensing; C16:0, palmitic acid; C18:1, oleic acid; TLR2, toll-like receptor 2; NLRP3, Nod-like receptor family, pyrin domain containing 3 inflammasome; IL-1β, interleukin-1β; Th17, Th17 T-cell; IL-17, interleukin-17, IL-1α, interleukin-1α.
Similar articles
- From pathogenesis of acne vulgaris to anti-acne agents.
Cong TX, Hao D, Wen X, Li XH, He G, Jiang X. Cong TX, et al. Arch Dermatol Res. 2019 Jul;311(5):337-349. doi: 10.1007/s00403-019-01908-x. Epub 2019 Mar 11. Arch Dermatol Res. 2019. PMID: 30859308 Review. - Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet.
Melnik B. Melnik B. Dermatoendocrinol. 2012 Jan 1;4(1):20-32. doi: 10.4161/derm.19828. Dermatoendocrinol. 2012. PMID: 22870349 Free PMC article. - Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne.
Melnik BC, Zouboulis CC. Melnik BC, et al. Exp Dermatol. 2013 May;22(5):311-5. doi: 10.1111/exd.12142. Exp Dermatol. 2013. PMID: 23614736 Free PMC article. - Evidence for acne-promoting effects of milk and other insulinotropic dairy products.
Melnik BC. Melnik BC. Nestle Nutr Workshop Ser Pediatr Program. 2011;67:131-45. doi: 10.1159/000325580. Epub 2011 Feb 16. Nestle Nutr Workshop Ser Pediatr Program. 2011. PMID: 21335995 Review. - Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment.
Melnik BC. Melnik BC. Cells. 2023 Nov 10;12(22):2600. doi: 10.3390/cells12222600. Cells. 2023. PMID: 37998335 Free PMC article. Review.
Cited by
- Plant Phenolics in the Prevention and Therapy of Acne: A Comprehensive Review.
Koch W, Zagórska J, Michalak-Tomczyk M, Karav S, Wawruszak A. Koch W, et al. Molecules. 2024 Sep 6;29(17):4234. doi: 10.3390/molecules29174234. Molecules. 2024. PMID: 39275081 Free PMC article. Review. - Effects of oral supplementation with FOS and GOS prebiotics in women with adult acne: the "S.O. Sweet" study: a proof-of-concept pilot trial.
Dall'Oglio F, Milani M, Micali G. Dall'Oglio F, et al. Clin Cosmet Investig Dermatol. 2018 Oct 8;11:445-449. doi: 10.2147/CCID.S179627. eCollection 2018. Clin Cosmet Investig Dermatol. 2018. PMID: 30349341 Free PMC article. - Endocrine Disrupting Chemicals, Hormone Receptors, and Acne Vulgaris: A Connecting Hypothesis.
Rao A, Douglas SC, Hall JM. Rao A, et al. Cells. 2021 Jun 9;10(6):1439. doi: 10.3390/cells10061439. Cells. 2021. PMID: 34207527 Free PMC article. Review. - Milk--A Nutrient System of Mammalian Evolution Promoting mTORC1-Dependent Translation.
Melnik BC. Melnik BC. Int J Mol Sci. 2015 Jul 27;16(8):17048-87. doi: 10.3390/ijms160817048. Int J Mol Sci. 2015. PMID: 26225961 Free PMC article. Review. - Ozenoxacin suppresses sebum production by inhibiting mTORC1 activation in differentiated hamster sebocytes.
Kitano T, Koiwai T, Fujikawa K, Mori S, Matsumoto T, Sato T. Kitano T, et al. J Dermatol. 2024 Sep;51(9):1187-1198. doi: 10.1111/1346-8138.17409. Epub 2024 Aug 1. J Dermatol. 2024. PMID: 39087744 Free PMC article.
References
- Puig O, Tjian R. Nutrient availability and growth: regulation of insulin signaling by dFOXO/FOXO1. Cell Cycle. 2006;5(5):503–505. - PubMed
- Gross DN, Wan M, Birnbaum MJ. The role of FOXO in the regulation of metabolism. Curr Diab Rep. 2009;9(3):208–214. - PubMed
- Lettieri Barbato D, Aquilano K, Ciriolo MR. FoxO1 at the nexus between fat catabolism and longevity pathways. Biochim Biophys Acta. 2014;1841(10):1555–1560. - PubMed
- Gulati P, Thomas G. Nutrient sensing in the mTOR/S6K1 signalling pathway. Biochem Soc Trans. 2007;35(Pt 2):236–238. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous