Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles - PubMed (original) (raw)
. 2015 Sep 22;9(9):8689-96.
doi: 10.1021/acsnano.5b02028. Epub 2015 Jul 31.
Affiliations
- PMID: 26212564
- DOI: 10.1021/acsnano.5b02028
Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles
Wen Jiang et al. ACS Nano. 2015.
Abstract
Restoration of dysfunctional tumor vasculature can reestablish the pressure gradient between intravascular and interstitial space that is essential for transporting nanomedicines into solid tumors. Morphologic and functional normalization of tumor vessels improves tissue perfusion to facilitate intratumoral nanoparticle delivery. However, this remodeling process also reduces tumor vessel permeability, which can impair nanoparticle transport. Although nanoparticles sized below 10 nm maximally benefited from tumor vessel normalization therapy for enhanced nanomedicine delivery, the small particle size severely limits its applicability. Here, we show that intermediate-sized nanoparticles (20-40 nm) can also benefit from tumor vasculature remodeling. We demonstrate that a window of opportunity exists for a two-stage transport strategy of different nanoparticle sizes. Overall, tumor vessel remodeling enhances the transvascular delivery of intermediate-size nanoparticles of up to 40 nm. Once within the tumor matrix, however, smaller nanoparticles experience a significantly lesser degree of diffusional hindrance, resulting in a more homogeneous distribution within the tumor interstitium. These findings suggest that antiangiogenic therapy and nanoparticle design can be combined in a multistage fashion, with two sets of size-inclusion criteria, to achieve optimal nanomedicine delivery into solid tumors.
Keywords: antiangiogenic therapy; nanomedicine; tumor delivery; tumor targeting.
Comment in
- Opening Windows into Tumors.
Simberg D. Simberg D. ACS Nano. 2015 Sep 22;9(9):8647-50. doi: 10.1021/acsnano.5b05161. Epub 2015 Sep 4. ACS Nano. 2015. PMID: 26340308
Similar articles
- Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy.
Liu YR, Guan YY, Luan X, Lu Q, Wang C, Liu HJ, Gao YG, Yang SC, Dong X, Chen HZ, Fang C. Liu YR, et al. Biomaterials. 2015 Feb;42:161-71. doi: 10.1016/j.biomaterials.2014.11.039. Epub 2014 Dec 16. Biomaterials. 2015. PMID: 25542804 - Smart Nanotherapeutic Targeting of Tumor Vasculature.
Li Z, Di C, Li S, Yang X, Nie G. Li Z, et al. Acc Chem Res. 2019 Sep 17;52(9):2703-2712. doi: 10.1021/acs.accounts.9b00283. Epub 2019 Aug 21. Acc Chem Res. 2019. PMID: 31433171 Review. - Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy.
Glass SB, Gonzalez-Fajardo L, Beringhs AO, Lu X. Glass SB, et al. Antioxid Redox Signal. 2019 Feb 10;30(5):747-761. doi: 10.1089/ars.2017.7370. Epub 2017 Nov 21. Antioxid Redox Signal. 2019. PMID: 28990403 Review. - Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
Podduturi VP, Magaña IB, O'Neal DP, Derosa PA. Podduturi VP, et al. Comput Methods Programs Biomed. 2013 Oct;112(1):58-68. doi: 10.1016/j.cmpb.2013.06.011. Epub 2013 Jul 18. Comput Methods Programs Biomed. 2013. PMID: 23871689 - Multistage nanoparticle delivery system for deep penetration into tumor tissue.
Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popovic Z, Jain RK, Bawendi MG, Fukumura D. Wong C, et al. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2426-31. doi: 10.1073/pnas.1018382108. Epub 2011 Jan 18. Proc Natl Acad Sci U S A. 2011. PMID: 21245339 Free PMC article.
Cited by
- Critical considerations for targeting colorectal liver metastases with nanotechnology.
Arshad U, Sutton PA, Ashford MB, Treacher KE, Liptrott NJ, Rannard SP, Goldring CE, Owen A. Arshad U, et al. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 Mar;12(2):e1588. doi: 10.1002/wnan.1588. Epub 2019 Sep 30. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020. PMID: 31566913 Free PMC article. Review. - Nanoparticle Delivery and Tumor Vascular Normalization: The Chicken or The Egg?
Mattheolabakis G, Mikelis CM. Mattheolabakis G, et al. Front Oncol. 2019 Nov 12;9:1227. doi: 10.3389/fonc.2019.01227. eCollection 2019. Front Oncol. 2019. PMID: 31799190 Free PMC article. Review. - Polymeric Nanoparticles for the Treatment of Malignant Gliomas.
Mahmoud BS, AlAmri AH, McConville C. Mahmoud BS, et al. Cancers (Basel). 2020 Jan 10;12(1):175. doi: 10.3390/cancers12010175. Cancers (Basel). 2020. PMID: 31936740 Free PMC article. Review. - Chloroquine and nanoparticle drug delivery: A promising combination.
Pelt J, Busatto S, Ferrari M, Thompson EA, Mody K, Wolfram J. Pelt J, et al. Pharmacol Ther. 2018 Nov;191:43-49. doi: 10.1016/j.pharmthera.2018.06.007. Epub 2018 Jun 20. Pharmacol Ther. 2018. PMID: 29932886 Free PMC article. Review. - Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment.
de Maar JS, Sofias AM, Porta Siegel T, Vreeken RJ, Moonen C, Bos C, Deckers R. de Maar JS, et al. Theranostics. 2020 Jan 1;10(4):1884-1909. doi: 10.7150/thno.38625. eCollection 2020. Theranostics. 2020. PMID: 32042343 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources