Modeling rotavirus infection and antiviral therapy using primary intestinal organoids - PubMed (original) (raw)
doi: 10.1016/j.antiviral.2015.09.010. Epub 2015 Sep 25.
Marcel Bijvelds 1, Wen Dang 1, Lei Xu 1, Annemiek A van der Eijk 2, Karen Knipping 3, Nesrin Tuysuz 4, Johanna F Dekkers 5, Yijin Wang 1, Jeroen de Jonge 6, Dave Sprengers 1, Luc J W van der Laan 6, Jeffrey M Beekman 5, Derk Ten Berge 4, Herold J Metselaar 1, Hugo de Jonge 1, Marion P G Koopmans 2, Maikel P Peppelenbosch 1, Qiuwei Pan 7
Affiliations
- PMID: 26408355
- DOI: 10.1016/j.antiviral.2015.09.010
Modeling rotavirus infection and antiviral therapy using primary intestinal organoids
Yuebang Yin et al. Antiviral Res. 2015 Nov.
Abstract
Despite the introduction of oral vaccines, rotavirus still kills over 450,000 children under five years of age annually. The absence of specific treatment prompts research aiming at further understanding of pathogenesis and the development of effective antiviral therapy, which in turn requires advanced experimental models. Given the intrinsic limitations of the classical rotavirus models using immortalized cell lines infected with laboratory-adapted strains in two dimensional cultures, our study aimed to model infection and antiviral therapy of both experimental and patient-derived rotavirus strains using three dimensional cultures of primary intestinal organoids. Intestinal epithelial organoids were successfully cultured from mouse or human gut tissues. These organoids recapitulate essential features of the in vivo tissue architecture, and are susceptible to rotavirus. Human organoids are more permissive to rotavirus infection, displaying an over 10,000-fold increase in genomic RNA following 24h of viral replication. Furthermore, infected organoids are capable of producing infectious rotavirus particles. Treatment of interferon-alpha or ribavirin inhibited viral replication in organoids of both species. Importantly, human organoids efficiently support the infection of patient-derived rotavirus strains and can be potentially harnessed for personalized evaluation of the efficacy of antiviral medications. Therefore, organoids provide a robust model system for studying rotavirus-host interactions and assessing antiviral medications.
Keywords: Interferon; Intestinal organoids; Ribavirin; Rotavirus.
Copyright © 2015 Elsevier B.V. All rights reserved.
Similar articles
- Rotavirus Infection and Cytopathogenesis in Human Biliary Organoids Potentially Recapitulate Biliary Atresia Development.
Chen S, Li P, Wang Y, Yin Y, de Ruiter PE, Verstegen MMA, Peppelenbosch MP, van der Laan LJW, Pan Q. Chen S, et al. mBio. 2020 Aug 25;11(4):e01968-20. doi: 10.1128/mBio.01968-20. mBio. 2020. PMID: 32843549 Free PMC article. - PI3K-Akt-mTOR axis sustains rotavirus infection via the 4E-BP1 mediated autophagy pathway and represents an antiviral target.
Yin Y, Dang W, Zhou X, Xu L, Wang W, Cao W, Chen S, Su J, Cai X, Xiao S, Peppelenbosch MP, Pan Q. Yin Y, et al. Virulence. 2018 Jan 1;9(1):83-98. doi: 10.1080/21505594.2017.1326443. Epub 2017 Jun 1. Virulence. 2018. PMID: 28475412 Free PMC article. - Stem cell-derived human intestinal organoids as an infection model for rotaviruses.
Finkbeiner SR, Zeng XL, Utama B, Atmar RL, Shroyer NF, Estes MK. Finkbeiner SR, et al. mBio. 2012 Jul 3;3(4):e00159-12. doi: 10.1128/mBio.00159-12. Print 2012. mBio. 2012. PMID: 22761392 Free PMC article. - Rotavirus replication and the role of cellular lipid droplets: New therapeutic targets?
Lever A, Desselberger U. Lever A, et al. J Formos Med Assoc. 2016 Jun;115(6):389-94. doi: 10.1016/j.jfma.2016.02.004. Epub 2016 Mar 24. J Formos Med Assoc. 2016. PMID: 27017233 Review. - Put Some Guts into It: Intestinal Organoid Models to Study Viral Infection.
García-Rodríguez I, Sridhar A, Pajkrt D, Wolthers KC. García-Rodríguez I, et al. Viruses. 2020 Nov 11;12(11):1288. doi: 10.3390/v12111288. Viruses. 2020. PMID: 33187072 Free PMC article. Review.
Cited by
- Nitazoxanide Inhibits Human Norovirus Replication and Synergizes with Ribavirin by Activation of Cellular Antiviral Response.
Dang W, Xu L, Ma B, Chen S, Yin Y, Chang KO, Peppelenbosch MP, Pan Q. Dang W, et al. Antimicrob Agents Chemother. 2018 Oct 24;62(11):e00707-18. doi: 10.1128/AAC.00707-18. Print 2018 Nov. Antimicrob Agents Chemother. 2018. PMID: 30104275 Free PMC article. - Organoid technology and applications in cancer research.
Xu H, Lyu X, Yi M, Zhao W, Song Y, Wu K. Xu H, et al. J Hematol Oncol. 2018 Sep 15;11(1):116. doi: 10.1186/s13045-018-0662-9. J Hematol Oncol. 2018. PMID: 30219074 Free PMC article. Review. - Transplantation of human intestinal organoids into the mouse mesentery: A more physiologic and anatomic engraftment site.
Cortez AR, Poling HM, Brown NE, Singh A, Mahe MM, Helmrath MA. Cortez AR, et al. Surgery. 2018 Oct;164(4):643-650. doi: 10.1016/j.surg.2018.04.048. Epub 2018 Jul 30. Surgery. 2018. PMID: 30072255 Free PMC article. - Comparative models for human nasal infections and immunity.
Casadei E, Salinas I. Casadei E, et al. Dev Comp Immunol. 2019 Mar;92:212-222. doi: 10.1016/j.dci.2018.11.022. Epub 2018 Dec 1. Dev Comp Immunol. 2019. PMID: 30513304 Free PMC article. Review. - 3D Cell Cultures: Evolution of an Ancient Tool for New Applications.
Cacciamali A, Villa R, Dotti S. Cacciamali A, et al. Front Physiol. 2022 Jul 22;13:836480. doi: 10.3389/fphys.2022.836480. eCollection 2022. Front Physiol. 2022. PMID: 35936888 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical