Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs - PubMed (original) (raw)
. 2015 Nov 11;15(11):7300-6.
doi: 10.1021/acs.nanolett.5b02497. Epub 2015 Oct 20.
Affiliations
- PMID: 26469188
- DOI: 10.1021/acs.nanolett.5b02497
Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs
Kevin J Kauffman et al. Nano Lett. 2015.
Abstract
Intracellular delivery of messenger RNA (mRNA) has the potential to induce protein production for many therapeutic applications. Although lipid nanoparticles have shown considerable promise for the delivery of small interfering RNAs (siRNA), their utility as agents for mRNA delivery has only recently been investigated. The most common siRNA formulations contain four components: an amine-containing lipid or lipid-like material, phospholipid, cholesterol, and lipid-anchored polyethylene glycol, the relative ratios of which can have profound effects on the formulation potency. Here, we develop a generalized strategy to optimize lipid nanoparticle formulations for mRNA delivery to the liver in vivo using Design of Experiment (DOE) methodologies including Definitive Screening and Fractional Factorial Designs. By simultaneously varying lipid ratios and structures, we developed an optimized formulation which increased the potency of erythropoietin-mRNA-loaded C12-200 lipid nanoparticles 7-fold relative to formulations previously used for siRNA delivery. Key features of this optimized formulation were the incorporation of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and increased ionizable lipid:mRNA weight ratios. Interestingly, the optimized lipid nanoparticle formulation did not improve siRNA delivery, indicating differences in optimized formulation parameter design spaces for siRNA and mRNA. We believe the general method described here can accelerate in vivo screening and optimization of nanoparticle formulations with large multidimensional design spaces.
Keywords: Lipid nanoparticle; design of experiment; in vivo; mRNA; nucleic acid.
Similar articles
- Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
Hadinoto K, Sundaresan A, Cheow WS. Hadinoto K, et al. Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002. Epub 2013 Jul 17. Eur J Pharm Biopharm. 2013. PMID: 23872180 Review. - Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA.
Ball RL, Hajj KA, Vizelman J, Bajaj P, Whitehead KA. Ball RL, et al. Nano Lett. 2018 Jun 13;18(6):3814-3822. doi: 10.1021/acs.nanolett.8b01101. Epub 2018 May 8. Nano Lett. 2018. PMID: 29694050 - Preparation and Optimization of Lipid-Like Nanoparticles for mRNA Delivery.
Li B, Dong Y. Li B, et al. Methods Mol Biol. 2017;1632:207-217. doi: 10.1007/978-1-4939-7138-1_13. Methods Mol Biol. 2017. PMID: 28730441 Free PMC article. - The Skin You Are In: Design-of-Experiments Optimization of Lipid Nanoparticle Self-Amplifying RNA Formulations in Human Skin Explants.
Blakney AK, McKay PF, Ibarzo Yus B, Hunter JE, Dex EA, Shattock RJ. Blakney AK, et al. ACS Nano. 2019 May 28;13(5):5920-5930. doi: 10.1021/acsnano.9b01774. Epub 2019 May 3. ACS Nano. 2019. PMID: 31046232 Free PMC article. - Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing.
Qiu M, Li Y, Bloomer H, Xu Q. Qiu M, et al. Acc Chem Res. 2021 Nov 2;54(21):4001-4011. doi: 10.1021/acs.accounts.1c00500. Epub 2021 Oct 20. Acc Chem Res. 2021. PMID: 34668716 Review.
Cited by
- Development of mRNA Lipid Nanoparticles: Targeting and Therapeutic Aspects.
Liu Y, Huang Y, He G, Guo C, Dong J, Wu L. Liu Y, et al. Int J Mol Sci. 2024 Sep 22;25(18):10166. doi: 10.3390/ijms251810166. Int J Mol Sci. 2024. PMID: 39337651 Free PMC article. Review. - Oral delivery of stabilized lipid nanoparticles for nucleic acid therapeutics.
Suri K, Pfeifer L, Cvet D, Li A, McCoy M, Singh A, Amiji MM. Suri K, et al. Drug Deliv Transl Res. 2024 Sep 19. doi: 10.1007/s13346-024-01709-4. Online ahead of print. Drug Deliv Transl Res. 2024. PMID: 39320435 - Comprehensive analysis of lipid nanoparticle formulation and preparation for RNA delivery.
Haque MA, Shrestha A, Mikelis CM, Mattheolabakis G. Haque MA, et al. Int J Pharm X. 2024 Sep 10;8:100283. doi: 10.1016/j.ijpx.2024.100283. eCollection 2024 Dec. Int J Pharm X. 2024. PMID: 39309631 Free PMC article. Review. - mRNA-Lipid Nanoparticle-Mediated Restoration of PTPN14 Exhibits Antitumor Effects by Overcoming Anoikis Resistance in Triple-Negative Breast Cancer.
Li W, Huang M, Wu Z, Zhang Y, Cai Y, Su J, Xia J, Yang F, Xiao D, Yang W, Xu Y, Liu Z. Li W, et al. Adv Sci (Weinh). 2024 Aug;11(32):e2309988. doi: 10.1002/advs.202309988. Epub 2024 Jun 21. Adv Sci (Weinh). 2024. PMID: 39189475 Free PMC article. - Combining mRNA with PBS and calcium ions improves the efficiency of the transfection of mRNA into tumors.
Ohta N, Matsuzaki T, Nakai M, Tabata Y, Nimura K. Ohta N, et al. Mol Ther Nucleic Acids. 2024 Jul 17;35(3):102273. doi: 10.1016/j.omtn.2024.102273. eCollection 2024 Sep 10. Mol Ther Nucleic Acids. 2024. PMID: 39184192 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources