Three-dimensional mass density mapping of cellular ultrastructure by ptychographic X-ray nanotomography - PubMed (original) (raw)
. 2015 Dec;192(3):461-469.
doi: 10.1016/j.jsb.2015.10.008. Epub 2015 Oct 22.
Barbora Malkova 2, Mirko Holler 2, Manuel Guizar-Sicairos 2, Enju Lima 3, Valerie Panneels 2, Gaia Pigino 4, Anne Greet Bittermann 5, Larissa Wettstein 2, Takashi Tomizaki 2, Oliver Bunk 2, Gebhard Schertler 2, Takashi Ishikawa 2, Roger Wepf 5, Andreas Menzel 2
Affiliations
- PMID: 26470812
- DOI: 10.1016/j.jsb.2015.10.008
Free article
Three-dimensional mass density mapping of cellular ultrastructure by ptychographic X-ray nanotomography
Ana Diaz et al. J Struct Biol. 2015 Dec.
Free article
Erratum in
- J Struct Biol. 2016 Jan;193(1):83
Abstract
We demonstrate absolute quantitative mass density mapping in three dimensions of frozen-hydrated biological matter with an isotropic resolution of 180 nm. As model for a biological system we use Chlamydomonas cells in buffer solution confined in a microcapillary. We use ptychographic X-ray computed tomography to image the entire specimen, including the 18 μm-diameter capillary, thereby providing directly an absolute mass density measurement of biological matter with an uncertainty of about 6%. The resulting maps have sufficient contrast to distinguish cells from the surrounding ice and several organelles of different densities inside the cells. Organelles are identified by comparison with a stained, resin-embedded specimen, which can be compared with established transmission electron microscopy results. For some identified organelles, the knowledge of their elemental composition reduces the uncertainty of their mass density measurement down to 1% with values consistent with previous measurements of dry weight concentrations in thin cellular sections by scanning transmission electron microscopy. With prospects of improving the spatial resolution in the near future, we expect that the capability of non-destructive three-dimensional mapping of mass density in biological samples close to their native state becomes a valuable method for measuring the packing of organic matter on the nanoscale.
Keywords: Chlamydomonas; Ptychography; X-ray microscopy.
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Similar articles
- Computed tomography of cryogenic biological specimens based on X-ray microscopic images.
Weiss D, Schneider G, Niemann B, Guttmann P, Rudolph D, Schmahl G. Weiss D, et al. Ultramicroscopy. 2000 Aug;84(3-4):185-97. doi: 10.1016/s0304-3991(00)00034-6. Ultramicroscopy. 2000. PMID: 10945329 - Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae.
Deng J, Lo YH, Gallagher-Jones M, Chen S, Pryor A Jr, Jin Q, Hong YP, Nashed YSG, Vogt S, Miao J, Jacobsen C. Deng J, et al. Sci Adv. 2018 Nov 2;4(11):eaau4548. doi: 10.1126/sciadv.aau4548. eCollection 2018 Nov. Sci Adv. 2018. PMID: 30406204 Free PMC article. - Electron tomography of membrane-bound cellular organelles.
Frey TG, Perkins GA, Ellisman MH. Frey TG, et al. Annu Rev Biophys Biomol Struct. 2006;35:199-224. doi: 10.1146/annurev.biophys.35.040405.102039. Annu Rev Biophys Biomol Struct. 2006. PMID: 16689634 Review. - Quantitative imaging of Candida utilis and its organelles by soft X-ray Nano-CT.
Liu J, Li F, Chen L, Guan Y, Tian L, Xiong Y, Liu G, Tian Y. Liu J, et al. J Microsc. 2018 Apr;270(1):64-70. doi: 10.1111/jmi.12650. Epub 2017 Sep 28. J Microsc. 2018. PMID: 28960304 - Basal bodies: their roles in generating asymmetry.
Dutcher SK. Dutcher SK. Harvey Lect. 2006-2007;102:17-50. doi: 10.1002/9780470593042.ch2. Harvey Lect. 2006. PMID: 20166562 Review. No abstract available.
Cited by
- Soft X-ray spectromicroscopy of human fibroblasts with impaired sialin function.
Mansikkala T, Kangas SM, Miinalainen I, Angervaniva P, Darin N, Blomqvist M, Hinttala R, Huttula M, Uusimaa J, Patanen M. Mansikkala T, et al. RSC Adv. 2024 Sep 10;14(39):28797-28806. doi: 10.1039/d4ra05520a. eCollection 2024 Sep 4. RSC Adv. 2024. PMID: 39257666 Free PMC article. - X-ray phase-contrast tomography of cells manipulated with an optical stretcher.
Burchert JP, Frohn J, Rölleke U, Bruns H, Yu B, Gleber SC, Stange R, Busse M, Osterhoff M, Salditt T, Köster S. Burchert JP, et al. J Synchrotron Radiat. 2024 Jul 1;31(Pt 4):923-935. doi: 10.1107/S1600577524003618. Epub 2024 Jun 11. J Synchrotron Radiat. 2024. PMID: 38861370 Free PMC article. - Nondestructive 3D Imaging of Microscale Damage inside Polymers-Based on the Discovery of Self-Excited Fluorescence Effect Induced by Electrical Field.
Sima W, Tang X, Sun P, Sun Z, Yuan T, Yang M, Zhu C, Shi Z, Deng Q. Sima W, et al. Adv Sci (Weinh). 2023 Sep;10(25):e2302262. doi: 10.1002/advs.202302262. Epub 2023 Jun 28. Adv Sci (Weinh). 2023. PMID: 37381643 Free PMC article. - Combined optical fluorescence microscopy and X-ray tomography reveals substructures in cell nuclei in 3D.
Wittmeier A, Bernhardt M, Robisch AL, Cassini C, Osterhoff M, Salditt T, Köster S. Wittmeier A, et al. Biomed Opt Express. 2022 Aug 25;13(9):4954-4969. doi: 10.1364/BOE.462493. eCollection 2022 Sep 1. Biomed Opt Express. 2022. PMID: 36187264 Free PMC article. - High-speed X-ray ptychographic tomography.
Batey D, Rau C, Cipiccia S. Batey D, et al. Sci Rep. 2022 May 12;12(1):7846. doi: 10.1038/s41598-022-11292-8. Sci Rep. 2022. PMID: 35551474 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials